
Honeydipper Configurations
Release 1.0.0

Mar 04, 2023

Honeydipper

1 Honeydipper 1
1.1 Overview . 1
1.2 Design . 2

1.2.1 Vision . 2
1.2.2 Core Concepts . 5
1.2.3 Features . 5

1.3 More information . 6
1.4 TODO . 6
1.5 License . 6
1.6 Contributing . 6

2 Tutorials 7
2.1 Installing Honeydipper . 7

2.1.1 Prerequisites . 7
2.1.2 Step 1: Prepare your bootstrap repo . 7
2.1.3 Step 2: Bootstrap your daemon . 8
2.1.4 Step 3: Hacking away . 10

2.2 Honeydipper Configuration Guide . 10
2.2.1 Topology and loading order . 11
2.2.2 Data Set . 11
2.2.3 Repos . 12
2.2.4 Drivers . 12
2.2.5 Systems . 13
2.2.6 Workflows . 14
2.2.7 Rules . 14
2.2.8 Config check . 15
2.2.9 References . 15

2.3 Workflow Composing Guide . 15
2.3.1 Composing Workflows . 16
2.3.2 Contextual Data . 21
2.3.3 Essential Workflows . 23
2.3.4 Running a Kubernetes Job . 24
2.3.5 Slash Commands . 30

2.4 Honeydipper Interpolation Guide . 32
2.4.1 Prefix interpolation . 33
2.4.2 Inline go template . 34

i

2.4.3 Workflow contextual data . 36
2.5 Driver Developer’s Guide . 37

2.5.1 Basics . 38
2.5.2 By Example . 38
2.5.3 Driver lifecycle and states . 39
2.5.4 Messages . 39
2.5.5 RPC . 40
2.5.6 Driver Options . 41
2.5.7 Collapsed Events . 42
2.5.8 Provide Commands . 43
2.5.9 Publishing and packaging . 43

2.6 DipperCL Document Automatic Generation . 44
2.6.1 Documenting a Driver . 45
2.6.2 Document a System . 46
2.6.3 Document a Workflow . 47
2.6.4 Formatting . 48
2.6.5 Building . 49
2.6.6 Publishing . 49

3 How-To 51
3.1 Enable Encrypted Config in Honeydipper . 51

3.1.1 Loading the driver . 51
3.1.2 Config the driver . 52
3.1.3 How to encrypt your secret . 52

3.2 Logging Verbosity . 53
3.3 Reload on Github Push . 53

3.3.1 Github Integration in Honeydipper . 53
3.3.2 Config webhook in Github repo . 54
3.3.3 Configure a reloading rule . 54
3.3.4 Reduce the polling interval . 54

3.4 Setup a test/dev environment locally . 55
3.4.1 Using docker-compose . 55
3.4.2 Using local Go environment . 55

4 Essentials 59
4.1 Installation . 59
4.2 Drivers . 59

4.2.1 api-broadcast . 59
4.2.2 auth-simple . 60
4.2.3 kubernetes . 61
4.2.4 redislock . 64
4.2.5 redispubsub . 65
4.2.6 redisqueue . 66
4.2.7 web . 67
4.2.8 webhook . 68

4.3 Systems . 69
4.3.1 circleci . 69
4.3.2 codeclimate . 71
4.3.3 github . 72
4.3.4 jira . 82
4.3.5 kubernetes . 84
4.3.6 opsgenie . 87
4.3.7 pagerduty . 91
4.3.8 slack . 93

ii

4.3.9 slack_bot . 96
4.4 Workflows . 100

4.4.1 channel_translate . 100
4.4.2 circleci_pipeline . 101
4.4.3 cleanup_kube_job . 101
4.4.4 codeclimate/add_private_repo . 102
4.4.5 codeclimate/add_public_repo . 102
4.4.6 inject_misc_steps . 102
4.4.7 notify . 102
4.4.8 opsgenie_users . 103
4.4.9 opsgenie_whoisoncall . 103
4.4.10 pagerduty_whoisoncall . 103
4.4.11 reload . 104
4.4.12 resume_workflow . 105
4.4.13 run_kubernetes . 105
4.4.14 send_heartbeat . 108
4.4.15 slack_users . 108
4.4.16 slashcommand . 108
4.4.17 slashcommand/announcement . 109
4.4.18 slashcommand/execute . 109
4.4.19 slashcommand/help . 109
4.4.20 slashcommand/prepare_notification_list . 109
4.4.21 slashcommand/respond . 109
4.4.22 slashcommand/status . 109
4.4.23 snooze_alert . 109
4.4.24 start_kube_job . 110
4.4.25 use_local_kubeconfig . 110
4.4.26 workflow_announcement . 110
4.4.27 workflow_status . 110

5 Gcloud 113
5.1 Installation . 113
5.2 Drivers . 113

5.2.1 gcloud-dataflow . 113
5.2.2 gcloud-gke . 117
5.2.3 gcloud-kms . 119
5.2.4 gcloud-pubsub . 119
5.2.5 gcloud-secret . 120
5.2.6 gcloud-spanner . 121

5.3 Systems . 122
5.3.1 dataflow . 122
5.3.2 kubernetes . 125

5.4 Workflows . 125
5.4.1 cancelDataflowJob . 125
5.4.2 drainDataflowJob . 126
5.4.3 use_gcloud_kubeconfig . 126
5.4.4 use_google_credentials . 127

6 Datadog 129
6.1 Installation . 129
6.2 Drivers . 129

6.2.1 datadog-emitter . 129
6.3 Systems . 131

6.3.1 datadog . 131

iii

iv

CHAPTER 1

Honeydipper

CircleCI

• Overview

• Design

– Vision

– Core Concepts

– Features

* Embracing GitOps

* Pluggable Architecture

* Abstraction

• More information

• TODO

• License

• Contributing

1.1 Overview

A IFTTT style event-driven, policy-based orchestration system that, is tailored towards SREs and DevOps workflows,
and has a pluggable open architecture. The purpose is to fill the gap between the various components used in DevOps
operations, to act as an orchestration hub, and to replace the ad-hoc integrations between the components so that the
all the integrations can also be composed as code.

The official web site is https://honeydipper.io

The documents and community repo references are also live at https://honeydipper.readthedocs.io/en/latest/

1

https://circleci.com/gh/honeydipper/honeydipper

Honeydipper Configurations, Release 1.0.0

1.2 Design

1.2.1 Vision

Engineers often use various systems and components to build and deliver services based on software products. The
systems and components need to interact with each other to achieve automation. There are usually integration so-
lutions that when implemented the components and systems can operate seamlessly. However, the integrations are
usually created or configured in ad-hoc fashion. When the number of systems/components increases, the number of
integrations and complexity of the integrations sometimes become unmanageable. All the systems/components are
entangled in a mesh like network (See below graph). A lot of redundant configuration or development work become
necessary. It is so hard, sometimes even impossible, to switch from one tool to another.

Systems
Ad-hoc Integration Mesh

Our vision is for Honeydipper to act as a central hub forming an ecosystem so that the various systems and components
can be plugged in together and the integrations can be composed using rules, workflows and abstracted entities like
systems, projects and organizations. With a centralized orchestration, redundant configurations and development work
can be reduced or eliminated. With the abstraction layer, The underlying tools and solutions become interchangeable.

2 Chapter 1. Honeydipper

Honeydipper Configurations, Release 1.0.0

Systems
orchestrated with Honeydipper

The core of Honeydipper is comprised of an event bus, and a rules/workflow engine. Raw events from various sources
are received by corresponding event drivers, and then packaged in a standard format then published to the event
bus. The rules/workflow engine picks up the event from the bus, and, based on the rules, triggers the actions or a
workflow with multiple actions.

1.2. Design 3

Honeydipper Configurations, Release 1.0.0

Dipper
Daemon

4 Chapter 1. Honeydipper

Honeydipper Configurations, Release 1.0.0

1.2.2 Core Concepts

In order for users to compose the rules, a few abstract concepts are introduced:

• Driver (Event)

• Raw Event

• System (Trigger): an abstract entity that groups dipper events and some configurations, metadata together

• Dipper Event (DipperMessage): a data structure that contains information that can be used for matching rules
and being processed following the rules

• Rules: if some Dipper Event on some system happens, then start the workflow of actions on certain systems
accordingly

• Features: A feature is a set of functions that can be mapped to a running driver, for example, the eventbus
feature is fulfilled by redisqueue driver

• Services: A service is a group of capabilities the daemon provides to be able to orchestrate the plugged systems
through drivers

• Workflow: Grouping of the actions so they can be processed, sequentially, parallel, etc

• Dipper Action (DipperMessage): a data structure that contains information that can be used for performing an
action

• System (Responder): an abstract entity that groups dipper actions, configurations, metadata together

• Raw Action

• Driver (Action)

As you can see, the items described above follow the order or life cycle stage of the processing of the events into
actions. Ideally, anything between the drivers should be composable, while some may tend to focusing on making
various systems, Dipper event/actions available, others may want to focus on rules, workflows.

1.2.3 Features

Embracing GitOps

Honeydipper should have little to no local configuration needed to be bootstrapped. Once bootstrapped, the system
should be able to pull configurations from one or more git repo. The benefit is the ease of maintenance of the system
and access control automatically provided by git repo(s). The system needs to watch the git repos, one way or another,
for changes and reload as needed. For continuous operation, the system should be able to survive when there is a
configuration error, and should be able to continue running with an older version of the configuration.

Pluggable Architecture

Drivers make up an important part of the Honeydipper ecosystem. Most of the data mutations and actual work pro-
cesses are handled by the drivers, including data decryption, internal communication, and interacting with external
systems. Honeydipper should be able to extend itself through loading external drivers dynamically, and when config-
urations change, reload the running drivers hot or cold. There should be an interface for the drivers to delegate work
to each other through RPCs.

1.2. Design 5

Honeydipper Configurations, Release 1.0.0

Abstraction

As mentioned in the concepts, one of Honeydipper’s main selling points is abstraction. Events, actions can be defined
traditionally using whatever characteristics provided by a driver, but also can be defined as an extension of another
event/action with additional or override parameters. Events and actions can be grouped together into systems where
data can be shared across. With this abstraction, we can separate the composing of complex workflows from defining
low level event/action hook ups. Whenever a low level component changes, the high level workflow doesn’t have to
change, one only needs to link the abstract events with the new component native events.

1.3 More information

Please find the main document index at https://honeydipper.readthedocs.io/en/latest/

To install, See Installation Guide.

For driver developers, please read this guide. Honeydipper driver developer’s guide

To get started on developing. See How to setup local test environment.

1.4 TODO

• Python driver library

• API service

• Dashboard webapp

• Auditing/logging driver

• State persistent driver

• Repo jailing

• RBAC

1.5 License

Honeydipper is licensed under the MIT License.

1.6 Contributing

Thank you for your interest! Please refer to the Code of Conduct for guidance.

6 Chapter 1. Honeydipper

CHAPTER 2

Tutorials

2.1 Installing Honeydipper

• Prerequisites

• Step 1: Prepare your bootstrap repo

• Step 2: Bootstrap your daemon

– Running in Kubernetes

* Using helm charts

* Create your own manifest file

– Running as docker container

– Building from source

• Step 3: Hacking away

2.1.1 Prerequisites

• A running redis server

2.1.2 Step 1: Prepare your bootstrap repo

As described in the architecture/design document, Honeydipper loads configurations directly from one or many git
repos. You can put the repo locally on the machine or pod where Honeydipper is running, or you can put the repos in
GitHub, Bitbucket or Gitlab etc, or even mix them together. Make sure you configuration repo is private, and protected
from unauthorized changes. Although, you can store all the sensitive information in encrypted form in the repo, you
don’t want this to become a target.

7

Honeydipper Configurations, Release 1.0.0

Inside your repo, you will need a init.yaml file. It is the main entrypoint that Honeydipper daemon seeks in each
repo. See the Configuration Guide for detailed explanation. Below is an example of the minimum required data to get
the daemon bootstrapped:

init.yaml

repos:

- repo: https://github.com/honeydipper/honeydipper-config-essentials.git

drivers:
redisqueue:
connection:

Addr: <redis server IP>:<port>
uncomment below line if your redis server requires authentication
Password: xxxxxxxx

redispubsub:
connection:

Addr: <redis server IP>:<port>
uncomment below line if your redis server requires authentication
Password: xxxxxxxx

2.1.3 Step 2: Bootstrap your daemon

Running in Kubernetes

This is the recommended way of using Honeydipper. Not only this is the easiest way to get Honeydipper started, it
also enables Honeydipper to take advantage of the power of Kubernetes.

Using helm charts

To pass the information about the bootstrap config repo to Honeydipper daemon, the recommended way is to put all
the information in a yaml file rather than use --values option during helm install. For example:

values.yaml

daemon:

env:
- name: REPO

value: git@github.com/example/honeydipper-config.git
- name: DIPPER_SSH_KEY

valueFrom:
secretKeyRef:
name: example-secret
key: id_rsa

Note that, we need to provide a ssh key for Honeydipper daemon to be able to fetch the private repo using ssh protocol.
Make sure that the key exists in your cluster as a secret.

Once the values file is prepared, you can run the helm install command like below.

helm install --values values.yaml orchestrator incubator/honeydipper

If you want to use an older version of the chart, (as of now, the latest one is 0.1.3), use --version to specify the
chart version. By default, the chart uses the latest stable version of the Honeydipper daemon docker image, (latest

8 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

is 1.0.0 as of now). You can change the version by specifying --set daemon.image.tag=x.x.x in your
helm install command.

Currently, the chart is available from incubator repo, and the honeydipper repo from helm hub as well. You may also
choose to customize and build the chart by yourself following below steps.

git clone git@github.com:honeydipper/honeydipper-charts.git
cd honeydipper
helm package honeydipper

You should see the chart file honeydipper-x.y.z.tgz in your current directory.

Create your own manifest file

You can use the below manifest file as a template to create your own. Note that, the basic information needed, besides
the docker image for Honeydipper daemon, is the same, REPO and DIPPER_SSH_KEY.

apiVersion: apps/v1beta2
kind: Deployment
metadata:

name: honeydipper-daemon
labels:
app: honeydipper-daemon

spec:
template:
metadata:
name: honeydipper-daemon

spec:
containers:

- name: honeydipper-daemon
image: honeydipper/honeydipper:1.0.0
imagePullPolicy: Always
env:
- name: REPO
value: git@github.com/example/honeydipper-config.git

- name: DIPPER_SSH_KEY
valueFrom:

secretKeyRef:
namne: example-secret
key: id_rsa

For the webhook driver, you will need to create a service.

apiVersion: v1
kind: Service
metadata:

name: honeydipper-webhook
spec:
type: LoadBalancer
ports:
- name: webhook
targetPort: 8080

(continues on next page)

2.1. Installing Honeydipper 9

https://hub.helm.sh/charts/honeydipper/honeydipper

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

port: 8080
selector:

app: honeydipper-daemon

Running as docker container

docker run -it -e 'REPO=git@github.com/example/honeydipper-config.git' -e "DIPPER_SSH_
→˓KEY=$(cat ~/.ssh/id_rsa)" honeydipper/honeydipper:1.0.0

Replace the repo url with your own, and specify the private key path for accessing the private repo remotely. You may
replace the value of DIPPER_SSH_KEY with a deploy key for your config repo.

Building from source

Prerequisites:

• Golang >= 1.11.xx

– Honeydipper uses go modules

• Git

• Instructions assume POSIX compliant shell

Instructions

export GO111MODULE=on
git clone https://github.com/honeydipper/honeydipper.git
pushd honeydipper
go install -v ./...
popd
REPO=git@github.com/example/honeydipper-config.git DIPPER_SSH_KEY="$(cat ~/.ssh/id_
→˓rsa)" honeydipper

NOTE: Specifying GO111MODULE is not necessary in golang >= 1.13.x

You don’t have to specify DIPPER_SSH_KEY if the key is used by your ssh client by default.

Alternatively, you can follow the developer setup guide the download and build.

2.1.4 Step 3: Hacking away

That’s it — your Honeydipper daemon is bootstrapped. You can start to configure it to suit your needs. The daemon
pulls your config repos every minute, and will reload when changes are detected. See the Honeydipper Guides for
more documents, including a way to setup GitHub push event-driven reload.

2.2 Honeydipper Configuration Guide

• Topology and loading order

10 Chapter 2. Tutorials

https://blog.golang.org/using-go-modules

Honeydipper Configurations, Release 1.0.0

• Data Set

• Repos

• Drivers

– Daemon configuration

• Systems

• Workflows

• Rules

• Config check

• References

2.2.1 Topology and loading order

As mentioned in the Architecture/Design, Honeydipper requires very little local configuration to bootstrap; it only
requires a few environment variables to point it towards the git repo from which the bootstrap configurations are
loaded. The bootstrap repo can load other repos using the repos section in any of the loaded yaml files. Inside every
repo, Honeydipper will first load the init.yaml, and then load all the yaml files under includes section. Any of
the files can also use a includes section to load even more files, and so on.

Inside every repo, when loading files, an including file will be loaded after all the files that it includes are loaded. So
the including file can override anything in the included files. Similarly, repos are loaded after their dependency repos,
so they can override anything in the depended repo.

One of the key selling point of Honeydipper is the ability to reuse and share. The drivers, systems, workflows and
rules can all be packaged into repos then shared among projects, teams and organizations. Over time, we are expecting
to see a number of reusable public config repos contributed and maintained by communities. The seed of the repos is
the honeydipper-config-essentials repo, and the reference document can be found here.

2.2.2 Data Set

DataSet is the building block of Honeydipper config. Every configuration file contains a DataSet. Once all files
are loaded, all the DataSet will be merged into a final DataSet. A DataSet is made up with one or more sections
listed below.

// DataSet is a subset of configuration that can be assembled to the complete final
→˓configuration.
type DataSet struct {

Systems map[string]System `json:"systems,omitempty"`
Rules []Rule `json:"rules,omitempty"`
Drivers map[string]interface{} `json:"drivers,omitempty"`
Includes []string `json:"includes,omitempty"`
Repos []RepoInfo `json:"repos,omitempty"`
Workflows map[string]Workflow `json:"workflows,omitempty"`
Contexts map[string]interface{} `json:"contexts,omitempty"`

}

While it is possible to fit everything into a single file, it is recommended to organize your configurations into smaller
chunks in a way that each chunk contains only relevant settings. For example, a file can define just a system and all its
functions and triggers. Or, a file can define all the information about a driver. Another example would be to define a
workflow in a file separately.

2.2. Honeydipper Configuration Guide 11

https://github.com/honeydipper/honeydipper-config-essentials
https://honeydipper-sphinx.readthedocs.io/en/latest/essentials.html

Honeydipper Configurations, Release 1.0.0

2.2.3 Repos

Repos are defined like below.

// RepoInfo points to a git repo where config data can be read from.
type RepoInfo struct {

Repo string
Branch string
Path string
Name string
Description string
KeyFile string
KeyPassEnv string

}

To load a repo other than the bootstrap repo, just put info in the repos section like below.

repos:

- repo: <git url to the repo>
branch: <optional, defaults to master>
path: <the location of the init.yaml, must starts with /, optional, defaults to />
keyFile: <deploy key used for cloning the repo, optional>
keyPassEnv: <an environment variable name containing the passphrase for the

→˓deploy key, optional>
...

2.2.4 Drivers

The drivers section provides driver specific config data, such as webhook listening port, Redis connections etc. It is
a map from the names of the drivers to their data. The data element and structure of the driver data is only meaningful
to the driver itself. Honeydipper just passes the data as-is, a map[string]interface{} in go.

Daemon configuration

Note that, daemon configuration is loaded and passed as a driver in this section.

drivers:
daemon:
loglevel: <one of INFO, DEBUG, WARNING, ERROR>
featureMap: # map of services to their defined features

global: # all services will recognize these features
emitter: datadog-emitter
eventbus: redisqueue

operator:
...

receiver:
...

engine:
...

features: # the features to be loaded, mapped features won't be loaded unless
→˓they are listed here

global:
- name: eventbus

(continues on next page)

12 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

required: true # will be loaded before other driver, and will rollback if
→˓this fails during config changes

- name: emitter
- name: driver:gcloud-kms # no feature name, just use the driver: prefix
required: true

operator:
- name: driver:gcloud-gke
...

2.2.5 Systems

As defined, systems are a group of triggers and actions and some data that can be re-used.

// System is an abstract construct to group data, trigger and function definitions.
type System struct {

Data map[string](interface{}) `json:"data,omitempty"`
Triggers map[string]Trigger `json:"triggers,omitempty"`
Functions map[string]Function `json:"functions,omitempty"`
Extends []string `json:"extends,omitempty"`

}

// Trigger is the datastructure hold the information to match and process an event.
type Trigger struct {

Driver string `json:"driver,omitempty"`
RawEvent string `json:"rawevent,omitempty"`
Conditions interface{} `json:"conditions,omitempty"`
// A trigger should have only one of source event a raw event.
Source Event `json:"source,omitempty"`

}

// Function is the datastructure hold the information to run actions.
type Function struct {

Driver string `json:"driver,omitempty"`
RawAction string `json:"rawaction,omitempty"`
Parameters map[string](interface{}) `json:"parameters,omitempty"`
// An action should have only one of target action or a raw action.
Target Action `json:"target,omitempty"`

}

A system can extend another system to inherit data, triggers and functions, and then can override any of the inherited
data with its own definition. We can create some abstract systems that contains part of the data that can be shared by
multiple child systems. A Function can either be defined using driver and rawAction or inherit definition from
another Function by specifying a target. Similarly, a Trigger can be defined using driver and rawEvent
or inherit definition from another Trigger using source.

For example, inheriting the kubernetes system to create an instance of kubernetes cluster.

systems:
my-k8s-cluster:
extends:
- kubernetes

data:
source:

type: gcloud-gke

(continues on next page)

2.2. Honeydipper Configuration Guide 13

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

project: myproject
location: us-west1-a
cluster: mycluster
service_account: ENC[gcloud-kms,...masked...]

You can then use my-k8s-cluster.recycleDeployment function in workflows or rules to recycle deploy-
ments in the cluster. Or, you can pass my-k8s-cluster to run_kubernetes workflow as system context
variable to run jobs in that cluster.

Another example would be to extend the slack_bot system, to create another instance of slack integration.

systems:
slack_bot: # first slack bot integration
data:
token: ...
slash_token: ...
interact_token: ...

my_team_slack_bot: # second slack bot integration
extends:
- slack_bot

data:
token: ...
slash_token: ...
interact_token: ...

rules:
- when:

source:
system: my_team_slack_bot
trigger: slashcommand

do:
call_workflow: my_team_slashcommands

2.2.6 Workflows

See Workflow Composing Guide for details on workflows.

2.2.7 Rules

Here is the definition:

// Rule is a data structure defining what action to take when certain event happen.
type Rule struct {

When Trigger
Do Workflow

}

Refer to the Systems section for the definition of Trigger, and see Workflow Composing Guide for workflows.

14 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

2.2.8 Config check

Honeydipper 0.1.8 and above comes with a configcheck functionality that can help checking configuration validity
before any updates are committed or pushed to the git repos. It can also be used in the CI/CD pipelines to ensure the
quality of the configuration files.

You can follow the installation guide to install the Honeydipper binary or docker image, then use below commands to
check the local configuration files.

REPO=</path/to/local/files> honeydipper configcheck

If using a docker image

docker run -it -v </path/to/config>:/config -e REPO=/config honeydipper/honeydipper:x.
→˓x.x configcheck

If your local config loads remote git repos and you want to validate them too, use CHECK_REMOTE environment
variable.

REPO=</path/to/config> CHECK_REMOTE=1 honeydipper configcheck

If using docker image

docker run -it -v </path/to/config>:/config -e REPO=/config -e CHECK_REMOTE=1
→˓honeydipper/honeydipper:x.x.x configcheck

You can also use -h option to see a full list of supported environment variables.

2.2.9 References

For a list of available drivers, systems, and workflows that you can take advantage of immediately, see the reference
here.

• Honeydipper config essentials

2.3 Workflow Composing Guide

• Composing Workflows

– Simple Actions

– Complex Actions

– Iterations

– Conditions

– Looping

– Hooks

• Contextual Data

– Sources

– Interpolation

– Merging Modifier

2.3. Workflow Composing Guide 15

../essentials.html

Honeydipper Configurations, Release 1.0.0

• Essential Workflows

– notify

– workflow_announcement

– workflow_status

– send_heartbeat

– snooze_alert

• Running a Kubernetes Job

– Basic of run_kubernetes

– Environment Variables and Volumes

– Predefined Step

– Expanding run_kubernetes

– Using run_kubernetes in GKE

• Slash Commands

– Predefined Commands

– Adding New Commands

– Mapping Parameters

– Messages and notifications

– Secure the commands

DipperCL is the control language that Honeydipper uses to configure data, assets and logic for its operation. It is
basically a YAML with a Honeydipper specific schema.

2.3.1 Composing Workflows

workflow defines what to do and how to perform when an event is triggered. workflow can be defined in rules
directly in the do section, or it can be defined independently with a name so it can be re-used/shared among multiple
rules and workflows. A workflow can be as simple as invoking a single driver rawAction. It can also contains
complicate logics, procedures dealing with various scenarios. All workflows are built with the same building blocks,
follow the same process, and they can be stacked/combined with each other to achieve more complicated goals.

An example of a workflow defined in a rule calling an rawAction:

rules:

- when:
driver: webhook
conditions:

url: /test1
do:

call_driver: redispubsub.broadcast
with:
subject: internal
channel: foo
key: bar

An example of named workflow that can be invoked from other workflows.

16 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

workflows:
foo:
call_function: example.execute
with:

key1: val2
key2: val2

rules:
- when:

source:
system: example
trigger: happened

do:
call_workflow: foo

Simple Actions

There are 4 types of simple actions that a workflow can perform.

• call_workflow: calling out to another named workflow, taking a string specifying the name of the workflow

• call_function: calling a predefined system function, taking a string in the form of system.function

• call_driver: calling a rawAction offered by a driver, taking a string in the form of driver.
rawAction

• wait: wait for the specified amount of time or receive a wake-up request with a matching token. The time
should be formatted according to the requirement for function ParseDuration. A unit suffix is required.

They can not be combined.

A function can also have no action at all. {} is a perfectly legit no-op workflow.

Complex Actions

Complex actions are groups of multiple workflows organized together to do some complex work.

• steps: an array of child workflows that are executed in sequence

• threads: an array of child workflows that are executed in parallel

• switch/cases/default: taking a piece of contextual data specified in switch, chose and execute from
a map of child workflows defined in cases or execute the child workflow defined in default if no branch
matches

These can not be combined with each other or with any of the simple actions.

When using steps or threads, you can control the behaviour of the workflow upon failure or error sta-
tus through fields on_failure or on_error. The allowed values are continue and exit. By default,
on_failure is set to continue while on_error is set to exit. When using threads, exit means that
when one thread returns error, the workflow returns without waiting for other threads to return.

Iterations

Any of the actions can be combined with an iterate or iterate_parallel field to be executed multiple times
with different values from a list. The current element of the list will be stored in a local contextual data item named

2.3. Workflow Composing Guide 17

https://golang.org/pkg/time/#ParseDuration

Honeydipper Configurations, Release 1.0.0

current. Optionally, you can also customize the name of contextual data item using iterate_as. The elements
of the lists to be iterated don’t have to be simple strings, it can be a map or other complex data structures.

For example:

workflows:
foo:
iterate:
- name: Peter

role: hero
- name: Paul

role: villain
call_workflow: announce
with:

message: '{{ .ctx.current.name }} is playing the role of `{{ .ctx.current.role }
→˓}`.'

Conditions

We can also specify the conditions that the workflow checks before taking any action.

• if_match/unless_match: specify the skeleton data to match the contextual data

• if/unless/if_any/unless/unless_all: specify the list of strings that interpolate to truy/falsy values

Some examples for using skeleton data matching:

workflows:
do_foo:
if_match:

foo: bar
call_workflow: do_something

do_bar:
unless_match:
team: :regex:engineering-.*

call_workflow: complaint
with:

message: Only engineers are allowed here.

do_something:
if_match:

user:
- privileged_user1
- privileged_user2

call_workflow: assert
with:

message: you are either privileged_user1 or priviledged_user2

do_some_other-stuff:
if_match:

user:
age: 13

call_workflow: assert
with:

message: .ctx.user matchs a data strucure with age field equal to 13

18 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

Please note how we use regular expression, list of options to match the contextual data, and how to match a field deep
into the data structure.

Below are some examples of using list of conditions:

workflows:

run_if_all_meets:
if:

- $ctx.exits # ctx.exits must not be empty and not one of such strings `false`,
→˓`nil`, `{}`, `[]`, `0`.

- $ctx.also # ctx.also must also be truy
call_workflow: assert
with:

message: `exits` and `also` are both truy

run_if_either_meets:
if_any:

- '{{ empty .ctx.exists | not }}'
- '{{ empty .ctx.also | not }}'

call_workflow: assert
with:

message: at least one of `exits` or `also` is not empty

Looping

We can also repeat the actions in the workflow through looping fields

• while: specify a list of strings that interpolate into truy/falsy values

• until: specify a list of strings that interpolate into truy/falsy values

For example:

workflows:
retry_func: # a simple forever retry
on_error: continue
on_failure: exit
with:

success: false
until:

- $ctx.success
steps:

- call_function: $ctx.func
- export:

success: '{{ eq .labels.status "success" }}'
no_export:

- success

retry_func_count_with_exp_backoff:
on_error: continue
on_failure: exit
with:

success: false
backoff: 0
count-: 2

until:
(continues on next page)

2.3. Workflow Composing Guide 19

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

- $ctx.success
- $ctx.count

steps:
- if:

- $ctx.backoff
wait: '{{ .ctx.backoff }}s'

- call_function: $ctx.func
- export:

count: '{{ sub (int .ctx.count) 1 }}'
success: '{{ eq .labels.status "success" }}'
backoff: '{{ .ctx.backoff | default 10 | int | mul 2 }}'

no_export:
- success
- count
- backoff

Hooks

Hooks are child workflows executed at a specified moments in the parent workflow’s lifecycle. It is a great way
to separate auxiliary work, such as sending heartbeat, sending slack messages, making an announcement, clean up,
data preparation etc., from the actual work. Hooks are defined through context data, so it can be pulled in through
predefined contexts, which makes the actual workflow seems less cluttered.

For example,

contexts:
_events:
'*':
hooks:

- on_first_action: workflow_announcement
opsgenie:
'*':
hooks:
- on_success:

- snooze_alert

rules:
- when:

source:
system: foo
trigger: bar

do:
call_workflow: do_something

- when:
source:

system: opsgenie
trigger: alert

do:
context: opsgenie
call_workflow: do_something

In the above example, although not specifically spelled out in the rules, both events will trigger the execution of
workflow_announcement workflow before executing the first action. And if the workflow responding to the
opsgenie.alert event is successful, snooze_alert workflow will be executed.

20 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

The supported hooks:

• on_session: when a workflow session is created, even {} no-op session will trigger this hook

• on_first_action: before a workflow performs first simple action

• on_action: before performs each simple action in steps

• on_item: before execute each iteration

• on_success: before workflow exit, and when the workflow is successful

• on_failure: before workflow exit, and when the workflow is failed

• on_error: before workflow exit, and when the workflow ran into error

• on_exit: before workflow exit

2.3.2 Contextual Data

Contextual data is the key to stitch different events, functions, drivers and workflows together.

Sources

Every workflow receives contextual data from a few sources:

• Exported from the event

• Inherit context from parent workflow

• Injected from predefined context, _default, _event and contexts listed through context or contexts

• Local context data defined in with field

• Exported from previous steps of the workflow

Since the data are received in that particular order listed above, the later source can override data from previous
sources. Child workflow context data is independent from parent workflow, anything defined in with or inherited
will only be in effect during the life cycle of current workflow, except the exported data. Once a field is exported, it
will be available to all outer workflows. You can override this by specifying the list of fields that you don’t want to
export.

Pay attention to the example retry_func_count_with_exp_backoff in the previous section. In order to not
contaminate parent context with temporary fields, we use no_export to block the exporting of certain fields.

Interpolation

We can use interpolation in workflows to make the workflow flexible and versatile. You can use interpolation in most
of the fields of a workflow. Besides contextual data, other data available for interpolation includes:

• labels - string values attached to latest received dipper Message indicating session status, IDs, etc.,

• ctx - contextual data,

• event - raw unexposed event data from the original event that triggered the workflow

• data - raw unexposed payload from the latest received dipper message

It is recommended to avoid using event and data in workflows, and stick to ctx as much as possible. The raw
unexposed data might eventually be deprecated and hidden. They may still be available in system definition.

DipperCL provides following ways of interpolation:

2.3. Workflow Composing Guide 21

Honeydipper Configurations, Release 1.0.0

• path interpolation - comma separated multiple paths following a dollar sign, e.g. $ctx.this,ctx.that,
ctx.default, cannot be mixed in strings. can specify a default value using either single, double or tilde
quotes if none of the keys are defined in the context, e.g. $ctx.this,ctx.that,"this value is
the default". Also, can use ? following the $ to indicate that nil value is allowed.

• inline go template - strings with go templates that get rendered at time of the workflow execution, requires
quoting if template is at the start of the string

• yaml parser - a string following a :yaml: prefix, will be parsed at the time of the execution, can be combined
with go template

• e-yaml encryption - a string with ENC[prefix, storing base64 encoded encrypted content

• file attachment - a relative path following a @: prefix, requires quoting

See interpolation guide for detail on how to use interpolation.

Merging Modifier

When data from different data source is merged, by default, map structure is deeply merged, while all other type of
data with the same name is replaced by the newer source. One exception is that if the data in the new source is not the
same type of the existing data, the old data stays in that case.

For example, undesired merge behaviour:

workflows

merge:
- export:

data: # original
foo: bar
foo_map:
key1: val1

foo_list:
- item1
- item2

foo_param: "a string"
- export:

data: # overriding
foo: foo
foo_map:
key2: val2

foo_list:
- item3
- item4

foo_param: # type inconsistent
key: val

After merging with the second step, the final exported data will be like below. Notice the fields that are replaced.

data: # final
foo: foo
foo_map:
key1: val1
key2: val2

foo_list:
- item3
- item4

foo_param: "a string"

22 Chapter 2. Tutorials

./interpolation.html

Honeydipper Configurations, Release 1.0.0

We can change the behaviour by using merging modifiers at the end of the overriding data names.

Usage:

var is an example name of the overriding data, the following character indicates what type of merge modifier to use.

• var-: only use the new value if the var is not already defined and not nil

• var+: if the var is a list or string, the new value will be appended to the existing values

• var*: forcefully override the value

2.3.3 Essential Workflows

We have made a few helper workflows available in the honeydipper-config-essentials repo. Hopefully,
they will make it easier for you to write your own workflows.

notify

Sending a chat message using configured system. The chat system can be anything that provides a say and a reply
function.

Required context fields

• chat_system: system used for sending the message, by default slack_bot

• message: the text to be sent, do your own formatting

• message_type: used for formatting/coloring and select recipients

• notify: a list of recipients, slack channel names if using slack_bot

• notify_on_error: a list of additional recipients if message_type is error or failure

workflow_announcement

This workflow is intended to be invoked through on_first_action hook to send a chat message to announce what
will happen.

Required context fields

• chat_system: system used for sending the message, by default slack_bot

• notify: a list of recipients, slack channel names if using slack_bot

• _meta_event: every events export a _meta_event showing the driver name and the trigger name, can be
overridden in trigger definition

• _event_id: if you export a _event_id in your trigger definition, it will be used for display, by default it
will be unspecified

• _event_url: the display of the _event_id will be a link to this url, by default http://honeydipper.
io

• _event_detail: if specified, will be displayed after the brief announcement

Besides the fields above, this workflow also uses a few context fields that are set internally from host workflow(not the
hook itself) definition.

• _meta_desc: the description from the workflow definition

• _meta_name: the name from the workflow definition

2.3. Workflow Composing Guide 23

Honeydipper Configurations, Release 1.0.0

• performing: what the workflow is currently performing

workflow_status

This workflow is intended to be invoked through on_exit, on_error, on_success or on_failure. Required
context fields

• chat_system: system used for sending the message, by default slack_bot

• notify: a list of recipients, slack channel names if using slack_bot

• notify_on_error: a list of additional recipients if message_type is error or failure

• status_detail: if available, the detail will be attached to the status notification message

Besides the fields above, this workflow also uses a few context fields and labels that are set internally from host
workflow(not the hook itself).

• _meta_desc: the description from the workflow definition

• _meta_name: the name from the workflow definition

• performing: what the workflow is currently performing

• .labels.status: the latest function return status

• .labels.reason: the reason for latest failure or error

send_heartbeat

This workflow can be used in on_success hooks or as a stand-alone step. It sends a heartbeat to the alerting system

Required context fields

• alert_system: system used for sending the heartbeat, can be any system that implements a heartbeat
function, by default opsgenie

• heatbeat: the name of the heartbeat

snooze_alert

This workflow can be used in on_success hooks or as a stand-alone step. It snooze the alert that triggered the
workflow.

• alert_system: system used for sending the heartbeat, can be any system that implements a snooze func-
tion, by default opsgenie

• alert_Id: the ID of the alert

2.3.4 Running a Kubernetes Job

We can use a predefined run_kubernetes workflow from honeydipper-config-essentials repo to run
kubernetes jobs. A simple example is below

workflows:
kubejob:
run_kubernetes:

(continues on next page)

24 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

system: samplecluster
steps:
- type: python
command: |
...python script here...

- type: bash
shell: |

...shell script here...

Basic of run_kubernetes

run_kubernetesworkflow requires a system context field that points to a predefined system. The system must be
extended from kubernetes system so that it has createJob, waitForJob and getJobLog function defined.
The predefined system should also have the information required to connect to the kubernetes cluster, the namespace
to use etc.

The required steps context field should tell the workflow what containers to define in the kubernetes job. If there are
more that one step, the steps before the last step are all defined in initContainters section of the pod, and the
last step is defined in containers.

Each step of the job has its type, which defines what docker image to use. The workflow comes with a few types
predefined.

• python

• python2

• python3

• node

• bash

• gcloud

• tf

• helm

• git

A step can be defined using a command or a shell. A command is a string or a list of strings that are passed
to the default entrypoint using args in the container spec. A shell is a string or a list of strings that passed to a
customized shell script entrypoint.

For example

workflows:
samplejob:
run_kubernetes:

system: samplecluster
steps:
- type: python3
command: 'print("hello world")'

- type: python3
shell: |
cd /opt/app

(continues on next page)

2.3. Workflow Composing Guide 25

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

pip install -r requirements.txt
python main.py

The first step uses the command to directly passing a python command or script to the container, while the second
step uses shell to run a script using the same container image.

There is a shared emptyDir volumes mounted at /honeydipper to every step, so that the steps can use the shared
storage to pass on information. One thing to be noted is that the steps don’t honour the default WORKDIR defined
in the image, instead all the steps are using /honeydipper as workingDir in the container spec. This can be
customized using workingDir in the step definition itself.

The workflow will return success in .labels.status when the job finishes successfully. If it fails to create
a job or fails to get the status or job output, the status will be error. If the job is created, but failed to complete
or return non-zero status code, the .labels.status will be set to failure. The workflow will export a log
context field that contains a map from pod name to a map of container name to log output. A simple string version of
the output that contains all the concatenated logs are exported as output context field.

Environment Variables and Volumes

You can define environments and volumes to be used in each step or as a global context field to share them across
steps. For example,

workflows:
samplejob:
run_kubernetes:

system: samplecluster
env:

- name: CLOUDSDK_CONFIG
value: /honeydipper/.config/gcloud

steps:
- git-clone
- type: gcloud
shell: |

gcloud auth activate-service-account $GOOGLE_APPLICATION_ACCOUNT --key-
→˓file=$GOOGLE_APPLICATION_CREDENTIALS

env:
- name: GOOGLE_APPLICATIION_ACCOUNT
value: sample-service-account@foo.iam.gserviceaccount.com

- name: GOOGLE_APPLICATION_CREDENTIALS
value: /etc/gcloud/service-account.json

volumes:
- mountPath: /etc/gcloud
volume:
name: credentials-volume
secret:

defaultMode: 420
secretName: secret-gcloud-service-account

- type: tf
shell: |
terraform plan -no-color

Please note that, the CLOUDSDK_CONFIG environment is shared among all the steps. This ensures that all
steps use the same gcloud configuration directory. The volume definition here is a combining of volumes and
volumeMounts definition from pod spec.

26 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

Predefined Step

To make writing kubernetes job workflows easier, we have created a few predefined_steps that you can use
instead of writing your own from scratch. To use the predefined_step, just replace the step definition with the
name of the step. See the example from the previous section, where the first step of the job is git-clone.

• git-clone

This step clones the given repo into the shared volume /honeydipper/repo folder. It requires that the system
contains a few field to identify the repo to be cloned. That includes:

• git_url - the url of the repo

• git_key_secret - if a key is required, it should be present in the kubernetes cluster as a secret

• git_ref - branch

We can also use the predefined step as a skeleton to create our steps by overriding the settings. For example,

workflows:
samplejob:
run_kubernetes:

system: samplecluster
steps:
- use: git-clone
volumes: [] # no need for secret volumes when cloning a public repo
env:
- name: REPO
value: https://github.com/honeydipper/honeydipper

- name: BRANCH
value: DipperCL

- ...

Pay attention to use field of the step.

Expanding run_kubernetes

If run_kubernetes only supports built-in types or predefined steps, it won’t be too useful in a lot of places.
Luckily, it is very easy to expand the workflow to support more things.

To add a new step type, just extend the _default context under start_kube_job in the script_types field.

For example, to add a type with the rclone image,

contexts:

_default:
start_kube_job:

script_types:
rclone:
image: kovacsguido/rclone:latest
command_prefix: []
shell_entry: ["/bin/ash", "-c"]

Supported fields in a type:

• image - the image to use for this type

• shell_entry - the customized entrypoint if you want to run shell script with this image

2.3. Workflow Composing Guide 27

Honeydipper Configurations, Release 1.0.0

• shell_prefix - a list of strings to be placed in args of the container spec before the actual shell script

• command_entry - in case you want to customize the entrypoint for using command

• command_prefix - a list of strings to be placed in args before command

Similarly, to add a new predefined step, extend the predefined_steps field in the same place.

For example, to add a rclone step

contexts:

_default:
start_kube_jobs:

predefined_steps:
rclone:
name: backup-replicate
type: rclone
command:
- copy
- --include
- '{{ coalesce .ctx.pattern (index (default (dict) .ctx.patterns)

→˓(default "" .ctx.from)) "*" }}'
- '{{ coalesce .ctx.source (index (default (dict) .ctx.sources) (default "

→˓" .ctx.from)) }}'
- '{{ coalesce .ctx.destination (index (default (dict) .ctx.destinations)

→˓(default "" .ctx.to)) }}'
volumes:
- mountPath: /root/.config/rclone
volume:
name: rcloneconf
secret:

defaultMode: 420
secretName: rclone-conf-with-ca

See Defining steps on how to define a step

Using run_kubernetes in GKE

GKE is a google managed kubernetes cluster service. You can use run_kubernetes to run jobs in GKE as you
would any kubernetes cluster. There are a few more helper workflows, predefined steps specifically for GKE.

• use_google_credentials workflow

If the context variable google_credentials_secret is defined, this workflow will add a step in the steps list
to activate the service account. The service account must exist in the kubernetes cluster as a secret, the service account
key can be specified using google_credentials_secret_key and defaults to service-account.json.
This is a great way to run your job with a service account other than the default account defined through the GKE node
pool. This step has to be executed before you call run_kubernetes, and the following steps in the job have to
be added through append modifier.

For example:

workflows:
create_cluster:
steps:

- call_workflow: use_google_credentials
- call_workflow: run_kubernetes

(continues on next page)

28 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

with:
steps+: # using append modifier here
- type: gcloud
shell: gcloud container clusters create {{ .ctx.new_cluster_name }}

• use_gcloud_kubeconfig workflow

This workflow is used for adding a step to run gcloud container clusters get-credentials to fetch
the kubeconfig data for GKE clusters. This step requires that the cluster context variable is defined and describing
a GKE cluster with fields like project, cluster, zone or region.

For example:

workflows:
delete_job:
with:

cluster:
type: gke # specify the type of the kubernetes cluster
project: foo
cluster: bar
zone: us-central1-a

steps:
- call_workflow: use_google_credentials
- call_workflow: use_gcloud_kubeconfig
- call_workflow: run_kubernetes:

with:
steps+:

- type: gcloud
shell: kubectl delete jobs {{ .ctx.job_name }}

• use_local_kubeconfig workflow

This workflow is used for adding a step to clear the kubeconfig file so kubectl can use default in-cluster setting to
work on local cluster.

For example:

workflows:
copy_deployment_to_local:
steps:

- call_workflow: use_google_credentials
- call_workflow: use_gcloud_kubeconfig

with:
cluster:

project: foo
cluster: bar
zone: us-central1-a

- export:
steps+:

- type: gcloud
shell: kubectl get -o yaml deployment {{ .ctx.deployment }} >

→˓kuberentes.yaml
- call_workflow: use_local_kubeconfig
- call_workflow: run_kubernetes

with:
steps+:

(continues on next page)

2.3. Workflow Composing Guide 29

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

- type: gcloud
shell: kubectl apply -f kubernetes.yaml

2.3.5 Slash Commands

The new version of DipperCL comes with integration with Slack, including slash commands, right out of the
box. Once the integration is setup, we can easily add/customize the slash commands. See integration guide (coming
soon) for detailed instruction. There are a few predefined commands that you can try out without need of any further
customization.

Predefined Commands

• help - print the list of the supported command and a brief usage info

• reload - force honeydipper daemon to check and reload the configuration

Adding New Commands

Let’s say that you have a new workflow that you want to trigger through slash command. Define or extend a
_slashcommands context to have something like below.

contexts:
_slashcommands:
slashcommand:
slashcommands:

<command>:
workflow: <workflow>
usage: just some brief intro to your workflow
contexts: # optionally you can run your workflow with these contexts

- my_context

Replace the content in <> with your own content.

Mapping Parameters

Most workflows expect certain context variables to be available in order to function, for example, you may need to
specify which DB to backup or restore using a DB context variable when invoking a backup/restore workflow. When a
slash command is defined, a parameters context variable is made available as a string that can be accessed through
$ctx.parameters using path interpolation or {{ .ctx.parameters }} in go templates. We can use the
_slashcommands context to transform the parameters context variable into the actual variables the workflow
requires.

For an simple example,

contexts:
_slashcommands:
slashcommand:
slashcommands:

my_greeting:
workflow: greeting
usage: respond with greet, take a single word as greeter

(continues on next page)

30 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

greeting: # here is the context applied to the greeting workflow
greeter: $ctx.parameters # the parameters is transformed into the variable

→˓required

In case you want a list of words,

contexts:
_slashcommands:
slashcommand:
slashcommands:

my_greeting:
workflow: greeting
usage: respond with greet, take a list of greeters

greeting: # here is the context applied to the greeting workflow
greeters: :yaml:{{ splitList " " .ctx.parameters }} # this generates a list

Some complex example, command with subcommands

contexts:
_slashcommands:
slashcommand:
slashcommands:

jobs:
workflow: jobHandler
usage: handling internal jobs

jobHandler:
command: '{{ splitList " " .ctx.parameters | first }}'
name: '{{ splitList " " .ctx.parameters | rest | first }}'
jobParams: ':yaml:{{ splitList " " .ctx.parameters | slice 2 | toJson }}'

Messages and notifications

By default, a slashcommand will send acknowledgement and return status message to the channel where the command
is launched. The messages will only be visible to the sender, in other words, is ephemeral. We can define a list of
channels to receive the acknowledgement and return status in addition to the sender. This increases the visibility and
auditability. This is simply done by adding a slash_notify context variable to the slashcommand workflow in
the _slashcommands context.

For example,

contexts:
_slashcommands:
slashcommand:
slash_notify:
- "#my_team_channel"
- "#security"
- "#dont_tell_the_ceo"

slashcommands:
...

2.3. Workflow Composing Guide 31

Honeydipper Configurations, Release 1.0.0

Secure the commands

When defining each command, we can use allowed_channels field to define a whitelist of channels from where
the command can be launched. For example, it is recommended to override the reload command to be launched
only from the whitelist channels like below.

contexts:
_slashcommands:
slashcommand:
slashcommands:

reload: # predefined
allowed_channels:

- "#sre"
- "#ceo"

2.4 Honeydipper Interpolation Guide

Tips: use Honeydipper config check feature to quickly identify errors and issues before committing your configuration
changes, or setup your configuration repo with CI to run config check upon every push or PR.

• Prefix interpolation

– ENC[driver,ciphertext/base64==] Encrypted content

– :regex: Regular expression pattern

– :yaml: Building data structure with yaml

– $ Referencing context data with given path

• Inline go template

– Caveat: What does “inline” mean?

– go template

– Functions offered by Honeydipper

* fromPath

* now

* duration

* ISO8601

* toYaml

• Workflow contextual data

– Workflow Interpolation

– Function Parameters Interpolation

– Trigger Condition Interpolation

Honeydipper functions and workflows are dynamic in nature. Parameters, system data, workflow data can be overrid-
den at various phases, and we can use interpolation to tweak the function calls to pick up the parameters dynamically,
or even to change the flow of execution at runtime.

32 Chapter 2. Tutorials

./configuration.md#config-check

Honeydipper Configurations, Release 1.0.0

2.4.1 Prefix interpolation

When a string value starts with certain prefixes, Honeydipper will transform the value based on the function specified
by the prefix.

ENC[driver,ciphertext/base64==] Encrypted content

Encrypted contents are usually kept in system data. The value should be specified in eyaml style, start with ENC[
prefix. Following the prefix is the name of the driver that can be used for decrypting the content. Following the driver
name is a “,” and the base64 encoded ciphertext.

Can be used in system data, event conditions.

For example:

systems:
kubenetes:
data:

service_account: ENC[gcloud-kms,...]

:regex: Regular expression pattern

yaml doesn’t have native support for regular expressions. When Honeydipper detects a string value starts with this
prefix, it will interpret the following string as a regular expression pattern used for matching the conditions.

Can be used in system data, event conditions.

For example:

rules:
- when:

driver: webhook
if_match:

url: :regex:/test_.*$
- do:
...

:yaml: Building data structure with yaml

At first look, It may seem odd to have this prefix, since the config is yaml to begin with. In some cases, combining
with the inline Go template, we can dynamically generate complex yaml structure that we can’t write at config time.

Can be used in workflow definitions(data, content), workflow condition, function parameters.

For example:

workflows:
create_list:
export:

items: |
:yaml:---
{{- range .ctx.results }}
- name: {{ .name }}
value: {{ .value }}

{{- end }}

2.4. Honeydipper Interpolation Guide 33

Honeydipper Configurations, Release 1.0.0

$ Referencing context data with given path

When Honeydipper executes a workflow, some data is kept in the context. We can use either the $ prefix or the
inline go template to fetch the context data. The benefit of using $ prefix is that we can get the data as a structure such
as map or list instead of a string representation.

Can be used in workflow definitions(data, content), workflow condition, function parameters.

For example:

workflows:
next_if_success:
if:

- $ctx.result
call_workflow: $ctx.work

The data available for $ referencing includes

• ctx - context data

• data - the latest received dipper message payload

• event - the original dipper message payload from the event

• labels - the latest receive dipper message labels

The $ reference can be used with multiple data entry separated by ,. The first non empty result will be used. For
example,

workflows:
find_first:
call_workflow: show_name
with:

name: $ctx.name,ctx.full_name,ctx.nick_name # choose the first non empty value
→˓from the listed varialbes

We can also specify a default value with quotes, either single quotes, double quotes or back ticks, if all the listed
variables are empty or nil. For example

workflows:
do_something:
call_workflow: something
with:

timeout: $ctx.timeout,ctx.default_timeout,"1800"

We can also allow nil or empty value using a ? mark. For example

workflows:
do_something:
call_workflow: something
with:

timeout: $ctx.timeout,ctx.default_timeout,"1800"
previous: $?ctx.previous

2.4.2 Inline go template

Besides the $ prefix, we can also use inline go template to access the workflow context data. The inline go template
can be used in workflow definitions(data, content), workflow condition, and function parameters.

34 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

Caveat: What does “inline” mean?

Unlike in typical templating languages, where templates were executed before yaml rendering, Honeydipper renders
all configuration yaml at boot time or when reloading, and only executes the template when the particular content is
needed. This allows Honeydipper to provide runtime data to the template when it is executed. However, that also
means that templates can only be stored in strings. You can’t wrap yaml tags in templates, unless you store the yaml as
text like in the example for :yaml: prefix interpolation. Also, you can’t use {{ at the beginning of a string without
quoting, because the yaml renderer may treat it as the start of a data structure.

go template

Here are some available resources for go template:

• How to use go template? https://golang.org/pkg/text/template/

• sprig functions

Functions offered by Honeydipper

fromPath

Like the :path: prefix interpolation, the fromPath function takes a parameter as path and return the data the path
points to. It is similar to the index built in function, but uses a more condensed path expression.

For example:

systems:
opsgenie:
functions:

snooze:
driver: web
rawAction: request
parameters:
URL: https://api.opsgenie.com/v2/alerts/{{ fromPath . .params.alertIdPath }}

→˓/snooze
header:

Content-Type: application/json
Authorization: GenieKey {{ .sysData.API_KEY }}

...

rules:
- when:

source:
system: some_system
event: some_event

do:
target:
system: opsgenie
function: snooze

parameters:
alertIdPath: event.json.alert.Id

now

This function returns current timestamps.

2.4. Honeydipper Interpolation Guide 35

https://golang.org/pkg/text/template/
http://masterminds.github.io/sprig/

Honeydipper Configurations, Release 1.0.0

workflows:
do_something:
call_workflow: something
with:

time: '{{ now | toString }}'

duration

This function parse the duration string and can be used for date time calculation.

workflows:
do_something:
steps:

- wait: '{{ duration "1m" }}'
- call_workflow: something

ISO8601

This function format the timestamps into the ISO8601 format.

workflows:
do_something:
steps:

- call_workflow: something
with:
time_str: '{{ now | ISO8601 }}'

toYaml

This function converts the given data structure into a yaml string

workflows:
do_something:
steps:

- call_workflow: something
with:
yaml_str: '{{ .ctx.parameters | toYaml }}'

2.4.3 Workflow contextual data

Depending on where the interpolation is executed, 1) workflow engine, 2) operator (function parameters), the available
contextual data is slightly different.

36 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

Workflow Interpolation

This happens when workflow engine is parsing and executing the workflows, but haven’t sent the action definition
to the operator yet.

• data: the payload of previous driver function return

• labels: the workflow data attached to the dipper.Message

– status: the status of the previous workflow, “success”, “failure” (driver failure), “blocked” (failed in dae-
mon)

– reason: a string describe why the previous workflow is not successful

– sessionID

• ctx: the data passed to the workflow when it is invoked

• event: the event payload that triggered the original workflow

Function Parameters Interpolation

This happens at operator side, before the final parameters are passed to the action driver.

• data: the payload of previous driver function return

• labels: the workflow data attached to the dipper.Message

– status: the status of the previous workflow, “success”, “failure” (driver failure), “blocked” (failed in dae-
mon)

– reason: a string describe why the previous workflow is not successful

– sessionID

• ctx: the data passed to the workflow when it is invoked

• event: the event payload that triggered the original workflow

• sysData: the data defined in the system the function belongs to

• params: the parameter that is passed to the function

Trigger Condition Interpolation

This happens at the start up of the receiver service. All the used events are processed into collapsed events.
The conditions in the collapsed events are interpolated before being passed to event driver.

• sysData: the data defined in the system the event belongs to

2.5 Driver Developer’s Guide

This document is intended for Honeydipper driver developers. Some programming experience is expected. Theoreti-
cally, we can use any programming language, even bash, to develop a driver for honeydipper. For now, there is a go
library named honeydipper/dipper that makes it easier to do this in golang.

• Basics

• By Example

• Driver lifecycle and states

2.5. Driver Developer’s Guide 37

Honeydipper Configurations, Release 1.0.0

• Messages

• RPC

• Driver Options

• Collapsed Events

• Provide Commands

• Publishing and packaging

2.5.1 Basics

• Drivers are running in separate processes, so they are executables

• Drivers communicate with daemon through stdin/stdout, logs into stderr

• The name of the service that the driver is working for is passed in as an argument

2.5.2 By Example

Below is a simple driver that does nothing but restarting itself every 20 seconds.

package main

import (
"flag"
"github.com/honeydipper/honeydipper/pkg/dipper"
"os"
"time"

)

var driver *dipper.Driver

func main() {
flag.Parse()

driver = dipper.NewDriver(os.Args[1], "dummy")
if driver.Service == "receiver" {
driver.Start = waitAndSendDummyEvent

}
driver.Run()

}

func waitAndSendDummyEvent(msg *dipper.Message) {
go func() {
time.Sleep(20 * time.Second)
driver.SendMessage(&dipper.Message{

Channel: "eventbus",
Subject: "message",
Payload: map[string]interface{}{"data": []string{"line 1", "line 2"}},

})
driver.State = "cold"
driver.Ping(msg)

}()
}

38 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

The first thing that a driver does is to parse the command line arguments so the service name can be retrieved through
os.Args[1]. Following that, the driver creates a helper object with dipper.NewDriver. The helper object provides
hooks for driver to define the functions to be executed at various stage in the life cycle of the driver. A call to the Run()
method will start the event loop to receive communication from the daemon.

There are 4 types of hooks offered by the driver helper objects.

• Lifecycle events

• Message handler

• RPC handler

• Command handler

Note that the waitAndSendDummyEvent method is assigned to Start hook. The Start hook needs to return immediately,
so the method launches another event loop in a go routine and return the control to the helper object. The second event
loop is where the driver actually receives events externally and use driver.SendMessage to relay to the service.

In this example, the dummy driver just manifest a fake event with json data as

{"data": ["line 1", "line 2"]}

The method also sets its status to “cold”, meaning cold restart needed, and uses the Ping command to send its own
state to the daemon, so it can be restarted.

2.5.3 Driver lifecycle and states

The driver will be in “loaded” state initially. When the Run() method is invoked, it will start fetching messages from
the daemon. The first message is always “command:options” which carries the data and configuration required by the
driver to perform its job. The helper object has a built-in handler for this and will dump the data into a structure which
can later be queried using driver.GetOption or driver.GetOptionStr method.

Following the “command:options” is the “command:start” message. The helper object also has a built-in handler for
the “command:start” message. It will first call the Start hook function, if defined, then change the driver state to
“alive” then report the state back to daemon with Ping method. One important thing here is that if the daemon doesn’t
receive the “alive” state within 10 seconds, it will consider the driver failed to start and kill the process by closing the
stdin/stdout channels. You can see why the Start hook has to return immediately.

When the daemon loads an updated version of the config, it will use “command:options” and “command:start” again
to signal the driver to reload. Instead of calling Start hook, it will call Reload hook for reloading. If Reload hook is
not defined, it will report to the daemon with “cold” state to demand a cold restart.

There is a handler for “command:stop” which calls the Stop hook for gracefully shutting down the driver. Although
this is not needed most of time, assuming the driver is stateless, it does have some uses if the driver uses some resources
that cannot be released gracefully by exiting.

2.5.4 Messages

Every message has an envelope, a list of labels and a payload. The envelope is a string ends with a newline, with fields
separated by space(s). An valid envelope has following fields in the exact order:

• Channel

• Subject

• Number of labels

• Size

2.5. Driver Developer’s Guide 39

Honeydipper Configurations, Release 1.0.0

Following the envelop are a list of labels, each label is made up with a label definition line and a list of bytes as label
value. The label definition includes

• Name of the label

• Size of the label in bytes

The payload is usually a byte array with certain encoding. As of now, the only encoding we use is “json”. An example
of sending a message to the daemon:

driver.SendMessage(&dipper.Message{
Channel: "eventbus",
Subject: "message",
Labels: map[string]string{
"label1": "value1",

},
Payload: map[string]interface{}{"data": []string{"line 1", "line 2"},
IsRaw: false, # default

})

The payload data will be encoded automatically. You can also send raw message if use IsRaw as true, meaning that
the driver will not attempt to encode the data for you, instead it will use the payload as bytes array directly. In case
you need to encode the message yourself, there are two methods, dipper.SerializePayload accepts a *dipper.Message
and put the encoded content back into the message, or dipper.SerializeContent which accepts bytes array and return
the data structure as map.

When a message is received through the Run() event loop, it will be passed to various handlers as a *dipper.Message
struct with raw bytes as payload. You can call dipper.DeserializeContent which accepts a byte array to decode the
byte array, and you can also use dipper.DeserializePayload which accepts a *dipper.Message and place the decoded
payload right back into the message.

Currently, we are categorizing the messages into 3 different channels:

• eventbus: messages that are used by engine service for workflow processing, subject could be message,
command or return

• RPC: messages that invoke another driver to run some function, subject could be call or return

• state: the local messages between driver and daemon to manage the lifecycle of drivers

2.5.5 RPC

Drivers can make and offer RPC calls to each other. Daemon can also make RPC calls to the drivers. This greatly
extends Honeydipper ability to conduct complicated operations. Each driver only need to handle the portion of the
work it intends to solve, and outsourcing auxiliary work to other drivers which have the corresponding capabilities.

For example, kubernetes driver interacts with kubernetes clusters, but the task of obtaining the credentials and
endpoints is outsourced to the vendor drivers, such as gcloud-gke, through a RPC call getKubeCfg. Another
example is how Honeydipper handles encrypted content. Honeydipper supports eyaml style of encrypted content in
configurations, and the cipher text is prefixed with a driver name. The decryption driver, gcloud-kms as an example,
must offer a RPC call decrypt.

To make a RPC Call, use Call or CallRaw method, Both method block for return with 10 seconds timeout. The
timeout is not tunable at this time. Each of them take three parameters:

• feature name - an abstract feature name, or a driver name with driver: prefix

• method name - the name of the RPC method

• parameters - payload of the dipper message constructed for the RPC call, a map or raw bytes

40 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

For example, calling the gcloud-kms driver for decryption

decrypted, err := driver.CallRaw("driver:gcloud-kms", "decrypt", encrypted)

There are also two non-blocking methods in the driver, CallNoWait or CallRawNoWait, to make RPC calls
without waiting for any return. For example, making a call to emit a metric to a metrics collecting system, e.g.
datadog.

err := driver.CallNoWait("emitter", "counter_increment", map[string]interface{}{
name: "honeydipper.driver.invoked",
tags: []string{
"driver:mydriver",

},
})

To offer a RPC method for the system to call, create the function that accept a single parameter *dipper.Message.
Add the method to RPCHandlers map, for example

driver.RPCHandler["mymethod"] = MyFunc

func MyFunc(m *dipper.Message) {
...

}

Feel free to panic in your method, the wrapper will send an error response to the caller if that happens. To return data
to the caller use the channel Reply on the incoming message. For example:

func MyFunc(m *dipper.Message) {
dipper.DeserializePayload(m)
if m.Payload != nil {
panic(errors.New("not expecting any parameter"))

}
m.Reply <- dipper.Message{
Payload: map[string]interface{}{"mydata": "myvalue"},

}
}

2.5.6 Driver Options

As mentioned earlier, the driver receives the options / configurations from the daemon automatically through the
helper object. As the data is stored in hashmap, the helper method driver.GetOption will accept a path and return an
Interface() object. The path consists of the dot-delimited key names. If the returned data is also a map, you can use
dipper.GetMapData or dipper.GetMapDataStr to retrieve information from them as well. If you are sure the data is a
string, you can use driver.GetOptionStr to directly receive it as string.

The helper functions follow the golang convention of returning the value along with a bool to indicate if it is acceptable
or not. See below for example.

NewAddr, ok := driver.GetOptionStr("data.Addr")
if !ok {
NewAddr = ":8080"

}

hooksObj, ok := driver.GetOption("dynamicData.collapsedEvents")
...

(continues on next page)

2.5. Driver Developer’s Guide 41

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

somedata, ok := dipper.GetMapDataStr(hooksObj, "key1.subkey")
...

There is always a data section in the driver options, which comes from the configuration file, e.g.:

...
drivers:
webhook:
Addr: :880

...

2.5.7 Collapsed Events

Usually an event receiver driver just fires raw events to the daemon; it doesn’t have to know what the daemon is
expecting. There are some exceptions, for example, the webhook driver needs to know if the daemon is expecting some
kind of webhook so it can decide what response to send to the web request sender, 200, 404 etc. A collapsed event is
an event definition that has all the conditions, including the conditions from events that the current event is inheriting
from. Dipper sends the collapsed events to the driver in the options with key name “dynamicData.collapsedEvents”.
Drivers can use the collapsed events to setup the filtering of the events before sending them to daemon. Not only does
this allow the driver to generate meaningful feedback to the external requesters, but it also serves as the first line of
defence against DDoS attacks on the daemon.

Below is an example of using the collapsed events data in webhook driver:

func loadOptions(m *dipper.Message) {
hooksObj, ok := driver.GetOption("dynamicData.collapsedEvents")
if !ok {
log.Panicf("[%s] no hooks defined for webhook driver", driver.Service)

}
hooks, ok = hooksObj.(map[string]interface{})
if !ok {
log.Panicf("[%s] hook data should be a map of event to conditions", driver.

→˓Service)
}
...

}

func hookHandler(w http.ResponseWriter, r *http.Request) {
eventData := extractEventData(w, r)

matched := false
for SystemEvent, hook := range hooks {
for _, condition := range hook.([]interface{}) {
if dipper.CompareAll(eventData, condition) {

matched = true
break

}
}
if matched {

break
}

}

if matched {
(continues on next page)

42 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

...
} else {
...

}
}

The helper function dipper.CompareAll will try to match your event data to the conditions. Daemon uses the same
function to determine if a rawEvent is triggering events defined in systems.

2.5.8 Provide Commands

A command is a raw function that provides response to an event. The workflow engine service sends “event-
bus:command” messages to the operator service, and operator service will map the message to the corresponding
driver and raw function, then forward the message to the corresponding driver with all the parameters as a “collapsed
function”. The driver helper provides ways to map raw actions to the function and handle the communications to back
to the daemon.

A command handler is very much like the RPC handler mentioned earlier. All you need to do is add it to the driver.
CommandProvider.Commands map. The command handler function should always return a value or panic. If it
exists without a return, it can block invoking workflow until it times out. If you don’t have any data to return, just send
a blank message back like below.

func main() {
...
driver.Commands["wait10min"] = wait10min
...

}

func wait10min(m *dipper.Message) {
go func() {
time.Sleep(10 * time.Minute)
m.Reply <- dipper.Message{}

}()
}

Note that the reply is sent in a go routine; it is useful if you want to make your code asynchronous.

2.5.9 Publishing and packaging

To make it easier for users to adopt your driver, and use it efficiently, you can create a public git repo and let users load
some predefined configurations to jump start the integration. The configuration in the repo should usually include:

• driver definition and fearture loading under the daemon section;

• some wrapper system to define some trigger, function that can be used in rules;

• some workflow to help users use the functions, see Workflow composing guide for detail

For example, I created a hypothetical integration for a z-wave switch, the configuration might look like:

daemon:

drivers:
myzwave:
name: myzwave

(continues on next page)

2.5. Driver Developer’s Guide 43

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

data:
Type: go
Package: github.com/example/cmd/myzwave

features:
receiver:

- "driver:myzwave"
operator:

- "driver:myzwave"

system:
lightwitch:
data:

token: "placeholder"
triggers:

driver: myzwave
rawEvent: turned_on
conditions:

device_id: "placeholder"
token: "{{ .sysData.token }}"

functions:
driver: myzwave
rawAction: turn_on
parameters:

device_id: "placeholder"
token: "{{ .sysData.token }}"

workflows:
all_lights_on:
- content: foreach_parallel

data:
items:
- list
- of
- device_ids
- to_be_override

work:
- type: function

content:
target:
system: lightswitch
function: turn_on

parameters:
device_id: '{{ `{{ .ctx.current }}` }}'

Assuming the configuration is in github.com/example/myzwave-config/init.yaml, the users only need to load the below
snippet into their bootstrap repo to load your driver and configurations, and start to customizing.

repos:
...
- repo: https://github.com/example/myzwave-config
...

2.6 DipperCL Document Automatic Generation

• Documenting a Driver

44 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

• Document a System

• Document a Workflow

• Formatting

• Building

• Publishing

Honeydipper configuration language (DipperCL) supports storing meta information of the configurations such as the
purpose of the configuration, the fields or parameters definition and examples. The meta information can be used for
automatic document generating and publishing.

The meta information are usually recorded using meta field, or description field. They can be put under any of
the below list of locations

1. drivers.daemon.drivers.* - meta information for a driver

2. systems.* - each system can have its meta information here

3. systems.*.functions.* - each system function can have its meta information here

4. systems.*.triggers.* - each system triggers can have its meta information here

5. workflows.* - each workflow can have its meta information here

The description field is usually a simple string that will be a paragraph in the document immediately following
the name of the entry. The meta field is a map of different items based on what entry the meta is for.

Since the description field does not support formatting, and the it could be used for log generating at runtime, it
is recommended to not use the description field, and instead use a description field under the meta field.

2.6.1 Documenting a Driver

Following fields are allowed under the meta field for a driver,

• description - A list of items to be rendered as paragraphs following the top level description

• configurations - A list of name, description pairs describing the items needed to be configured for
this driver

• notes - A list of items to be rendered as paragraphs following the configurations

• rawActions - A list of meta information for rawAction, see below for detail

• rawEvents - A list of meta information for rawEvents, see below for detail

• RPCs - A list of meta information for RPCs, see below for detail

For each of the rawActions,

• description - A list of items to be rendered as paragraphs following the name of the action

• parameters - A list of name, description pairs describing the context variables needed for this action

• returns - A list of name, description pairs describing the context variables exported by this action

• notes - A list of items to be rendered as paragraphs following the above items

For each of the rawEvents,

• description - A list of items to be rendered as paragraphs following the name of the event

• returns - A list of name, description pairs describing the context variables exported by this event

• notes - A list of items to be rendered as paragraphs following the above items

2.6. DipperCL Document Automatic Generation 45

Honeydipper Configurations, Release 1.0.0

For each of the RPCs,

• description - A list of items to be rendered as paragraphs following the name of the RPC

• parameters - A list of name, description pairs describing the parameters needed for this RPC

• returns - A list of name, description pares describing the values returned from this RPC

• notes - A list of items to be rendered as paragraphs following the above items

For example, to define the meta information for a driver:

drivers:
daemon:
drivers:
my-driver:
description: The driver is to enable Honeydipper to integrate with my service

→˓with my APIs.
meta:
description:

- ... brief description for the system ...

configurations:
- name: foo
description: A brief description for foo

- name: bar
description: A brief description for bar
...

rawEvents:
myEvent:
description:
- |
paragraph

returns:
- name: key1
description: description for key1

- name: key2
description: description for key2

notes:
- some notes as text
- example:

...
...

2.6.2 Document a System

Following fields are allowed under the meta field for a system,

• description - A list of items to be rendered as paragraphs following the top level description

• configurations - A list of name, description pairs describing the items needed to be configured for
this in system data

• notes - A list of items to be rendered as paragraphs following the configurations

For each of the functions,

• description - A list of items to be rendered as paragraphs following the name of the function

46 Chapter 2. Tutorials

Honeydipper Configurations, Release 1.0.0

• inputs - A list of name, description pairs describing the context variables needed for this function

• exports - A list of name, description pares describing the context variables exported by this function

• notes - A list of items to be rendered as paragraphs following the above items

For each of the triggers,

• description - A list of items to be rendered as paragraphs following the name of the trigger

• exports - A list of name, description pares describing the context variables exported by this trigger

• notes - A list of items to be rendered as paragraphs following the above items

For example, to define the mata information for a system,

systems:
mysystem:
meta:
description:

- ... brief description for the system ...

configurations:
- name: key1
description: ... brief description for key1 ...

- name: key2
description: ... brief description for key2 ...

notes:
- ... some notes ...
- example: |
... sample in yaml ...

data:
...

functions:
myfunc:
meta:
description:

- ... brief description for the function ...
inputs:

- name: key1
description: ... brief description for key1 ...

- name: key2
description: ... brief description for key2 ...

exports:
- name: key3
description: ... brief description for key3 ...

- name: key4
description: ... brief description for key4 ...

notes:
- ... some notes ...
- example: |

... sample in yaml ...

2.6.3 Document a Workflow

Following fields are allowed under the meta field for a workflow,

2.6. DipperCL Document Automatic Generation 47

Honeydipper Configurations, Release 1.0.0

• description - A list of items to be rendered as paragraphs following the top level description

• inputs - A list of name, description pairs describing the context variables needed for this workflow

• exports - A list of name, description pares describing the context variables exported by this workflow

• notes - A list of items to be rendered as paragraphs following the above items

For example, to define the mata information for a workflow,

workflows:
myworkflow:
meta:

description:
- ... brief description for the workflow ...

inputs:
- name: key1
description: ... brief description for key1 ...

- name: key2
description: ... brief description for key2 ...

exports:
- name: key3
description: ... brief description for key3 ...

- name: key4
description: ... brief description for key4 ...

notes:
- ... some notes ...
- example: |
... sample in yaml ...

2.6.4 Formatting

Both description and notes fields under meta support formatting. They accept a list of items that each will be
rendered as a paragraph in the documents. The only difference between them is the location where they will appear in
the documents.

Honeydipper docgen uses sphinx to render the documents, so the source document is in rst format. You can use
rst format in each of the paragraphs. You can also let docgen to format your paragraph by specify a data structure
as the item instead of plain text.

For example, plain text paragraph,

description:
- This is a plain text paragraph.

Highlighting the paragraph, see sphinx document for detail on highlight type.

notes:
- highlight: This paragraph will be highlighted.
- highlight: This paragraph will be highlighted with type `error`.
type: error

Specify a code block,

notes:
- See below for an example
- example: | # by default, yaml

(continues on next page)

48 Chapter 2. Tutorials

https://sphinx-rtd-theme.readthedocs.io/en/stable/demo/demo.html#admonitions

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

rules:

- when: ...
do: ...

- example: |
func dosomething() {
}

type: go

2.6.5 Building

In order to build the document for local viewing, follow below steps.

1. install sphinx following the sphinx installation document

2. install markdown extension for sphinx following the recommonmark installation document

3. install the read the docs theme for sphinx following the readthedoc theme installation document

4. clone the honeydipper-sphinx repo

git clone https://github.com/honeydipper/honeydipper-sphinx.git

5. generating the source document for sphinx

cd honeydipper-sphinx
docker run -it -v $PWD/docgen:/docgen -v $PWD/source:/source -e DOCSRC=/docgen -e
→˓DOCDST=/source honeydipper/honeydipper:1.0.0 docgen

6. build the documents

cd honeydipper-sphinx
make html

7. view your documents

cd honeydipper-sphinx
open build/html/index.html

2.6.6 Publishing

In order to including your document in the Honeydipper community repo section of the documents, follow below
steps.

1. clone the honeydipper-sphinx repo

git clone https://github.com/honeydipper/honeydipper-sphinx.git

2. modify the docgen/docgen.yaml to add your repo under the repos section

3. submit a PR

2.6. DipperCL Document Automatic Generation 49

http://www.sphinx-doc.org/en/master/usage/installation.html
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://sphinx-rtd-theme.readthedocs.io/en/latest/installing.html

Honeydipper Configurations, Release 1.0.0

50 Chapter 2. Tutorials

CHAPTER 3

How-To

3.1 Enable Encrypted Config in Honeydipper

Honeydipper outsources encryption/decryption tasks to drivers. In order for Honeydipper to be able to decrypt
the encrypted content in the config files, the proper driver needs to be loaded and configured. By default, the
honeydipper-config-essentials repo gcloud bundle comes with a gcloud KMS driver, I will use this
as an example to explain how decryption works.

• Loading the driver

• Config the driver

• How to encrypt your secret

3.1.1 Loading the driver

When you include the honeydipper-config-essentials repo from your bootstrap repo like below:

repos:

- repo: https://github.com/honeydipper/honeydipper-config-essentials.git
path: /gcloud

The gcloud-kms driver is loaded automatically with following daemon configuration.

drivers:
...
daemon:
...
features:

global:
- name: driver:gcloud-kms
required: true

(continues on next page)

51

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

...
drivers:
...
gcloud-kms:

name: gcloud-kms
type: builtin
handlerData:
shortName: gcloud-kms

Note that the above configuration snippet is for your information purpose, you don’t have to manually type them in if
you include the gcloud bundle from the honeydipper-config-essential repo.

3.1.2 Config the driver

The gcloud-kms driver assumes that there is a default google credential where the daemon is running. This is
usually the case when you run Honeydipper in gcloud either in Compute Engine or in Kubernetes clusters. See GCP
documentation on how to configure the Compute Engine instance or Kubernetes clusters with a service account. If
you are running this from your workstation, make sure you run gcloud auth login to authenticate with gcloud.
The service account or the credential you are using needs to have roles/kms.CryptoKeyDecryptor IAM role.
If you are running the Honeydipper in a docker container other than gcloud, you will need to mount a service account
key file into the container and set GOOGLE_APPLICATION_CREDENTIALS environment variable.

The gcloud-kms driver expects a configuration item under drivers.gcloud-kms named keyname.

For example:

drivers:
...
gcloud-kms:
keyname: projects/<your project>/locations/<region>/keyRings/<keyring name>/

→˓cryptoKeys/<key name>
...

Once this is configured in your repo and loaded by the daemon, you can start to use this driver to decrypt content in
the configuration files.

3.1.3 How to encrypt your secret

Assuming you have gcloud command installed, and authenticated, and you have the roles/kms.
CryptoKeyEncryptor role.

echo -n xxxx_your_secret_xxxx |
gcloud --project=<...> kms encrypt --plaintext-file=- --ciphertext-file=- --keyring=

→˓<...> --key=<...> --location=<...> |
base64

Fill in the blank for project, keyring, location and key with the same information you configured for the
driver. The command will output the base64 encoded cipher text. You can use this in your configuration file with
eyaml style syntax. For example:

systems:
my_system:

(continues on next page)

52 Chapter 3. How-To

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

data:
mysecret: ENC[gcloud-kms,---base64 encoded ciphertext---]

See the interpolation guide for more information on eyaml syntax.

3.2 Logging Verbosity

Honeydipper uses stdout and stderr for logging. The stdout is used for all levels of logs, while stderr is used for
reporting warning or more critical messages. The daemon and each driver can be configured individually on logging
verbosity. Just put the verbosity level in drivers.<driver name>.loglevel. Use daemon as driver name
for daemon logging.

For example:

drivers:
daemon:
loglevel: INFO

web:
loglevel: DEBUG

webhook:
loglevel: WARNING

The supported levels are, from most critical to least:

• CRITICAL

• ERROR

• WARNING

• NOTICE

• INFO

• DEBUG

3.3 Reload on Github Push

After following this guide, the Honeydipper daemon should not pull from config repo as often as before, and it can
reload when there is any change to the remote repo.

• Github Integration in Honeydipper

• Config webhook in Github repo

• Configure a reloading rule

• Reduce the polling interval

3.3.1 Github Integration in Honeydipper

Create a yaml file in your config repo to store the settings for github integration, and make sure it is loaded through
includes in init.yaml. See the github integration reference for detail on how to config.

For example:

3.2. Logging Verbosity 53

https://honeydipper-sphinx.readthedocs.io/en/latest/essentials.html#github

Honeydipper Configurations, Release 1.0.0

integrations.yaml

systems:
...
github:
token: ENC[gcloud-kms,xxxxxx..]
oauth_token: ENC[gcloud-kms,xxxxxx...]

By configuring the github integration, we enabled a webhook at certain url (by default, /github/push, see your
infrastructure configuration for the url host and port). As of now, the Honeydipper webhook driver doesn’t support
authentication using signature header, so we use a token to authenticate requests coming from github.

3.3.2 Config webhook in Github repo

Go to your config repo in github, click settings => webhooks, then add a webhook with the webhook url. For
example,

https://mywebhook.example.com:8443/github/push?token=xxxxxxxx

Make sure you select “Pushes” to be sent to the configured webhook.

3.3.3 Configure a reloading rule

Create a yaml file in your config repo to store a rule, and make sure it is loaded through includes in one of previously
loaded yaml file. The rule should look like below

reload_on_gitpush.yaml

rules:

- when:
source:

system: github
trigger: push

do:
if_match:
- git_repo: myorg/myconfig
git_ref: refs/heads/master

call_workflow: reload

Your repository name and branch name may differ.

After the rule is loaded into the Honeydipper daemon, you should be able to see from the logs, or the slack channel
where the daemon is configured to set the status, that the daemon reloads configuration when there is new push to your
repo. The if_match in the do section takes a list, so if you want to watch for more than one repo, just add them into
the list.

3.3.4 Reduce the polling interval

In the configuration for your daemon, set the configCheckInterval to a longer duration. The duration is parsed
using ParseDuration API, use ‘m’ suffix for minutes, ‘h’ for hours. See below for example:

54 Chapter 3. How-To

https://golang.org/pkg/time/#ParseDuration

Honeydipper Configurations, Release 1.0.0

daemon.yaml

drivers:
daemon:
configCheckInterval: "60m"

3.4 Setup a test/dev environment locally

3.4.1 Using docker-compose

As of 2.4.0, we added support for running and developing using docker compose. It should simplify the process of
setting up and running the system and improve the developer experience.

git clone https://github.com/honeydipper/honeydipper.git
cd dev/macos # or linux
cat > .env <<EOF
REPO=<...>
BRANCH=<...>
EOF
docker-compose up

The container will try to use your SSH_AUTH_SOCK to clone remote ssh repo if needed. Or you can use
DIPPER_SSH_KEY environment variable to pass a ssh private key directly into the container. To use a repo on
local file system, use REPO_DIR instead of REPO. You can also specify DEBUG='*' or DEBUG='daemon' in the
.env file to increase the log verbosity.

3.4.2 Using local Go environment

Setup Go environment

• Setup a directory as your go work directory and add it to GOPATH. Assuming go 1.13.1 or up is installed, gvm
is recommended to manage multiple versions of go. You may want to persist the GOPATH in your bash_profile

mkdir ~/go
export GOPATH=$GOPATH:$PWD/go
export PATH=$PATH:$GOPATH/bin

Clone the code

go get github.com/honeydipper/honeydipper

or

git clone https://github.com/honeydipper/honeydipper.git

Build and test

• Build

3.4. Setup a test/dev environment locally 55

https://docs.docker.com/compose/

Honeydipper Configurations, Release 1.0.0

go install -v ./...

• Run tests

make test

To run only the unit tests

make unit-tests

To run only the integration tests

make integration-tests

• Clean up mockgen generated files

make clean

• For pre-commit hooks

curl -sfL https://install.goreleaser.com/github.com/golangci/golangci-lint.sh | sh -s
→˓-- -b $(go env GOPATH)/bin v1.15.0
brew install pre-commit
pre-commit install --install-hooks

Create local config REPO

Run below command to create your local config repo.

git init mytest
cd mytest
cat <<EOF > init.yaml
repos:

- repo: https://github.com/honeydipper/honeydipper-config-essentials.git

drivers:
redisqueue:
connection:

Addr: 127.0.0.1:6379
redispubsub:
connection:

Addr: 127.0.0.1:6379

rules:
- when:

driver: webhook
if_match:

url: /health
do: {}

EOF
git add init.yaml
git commit -m 'init' -a

56 Chapter 3. How-To

Honeydipper Configurations, Release 1.0.0

Start Honeydipper daemon

Before you start your Honeydipper daemon, you need:

1. Have a redis server running locally

2. If you want to use encrypted configuration, make sure your are authenticated with google and having “Cloud
KMS Crypto Encryptor/Decryptor” role. See encryption guide for detail

REPO=/path/to/mytest LOCALREDIS=1 honeydipper

When you use LOCALREDIS=1 environment vairable, Honeydipper daemon will ignore the connection settings from
your repo and use localhost instead.

You can also set envrionment DEBUG="*" to enable verbose debug logging for all parts of daemon and drivers.

Once the daemon is running, you can access the healthcheck url like below

curl -D- http://127.0.0.1:8080/health

You should see a 200 response code. There is no payload in the response.

See configuration guide for detail on how to configure your system.

Since 2.4.0, there is an easier way to start the daemon using Makefile. Simply put all the needed environment
variable in a .env file at the top level directory, then run make run.

3.4. Setup a test/dev environment locally 57

Honeydipper Configurations, Release 1.0.0

58 Chapter 3. How-To

CHAPTER 4

Essentials

The essential configurations to bootstrap Honeydipper

4.1 Installation

Include the following section in your init.yaml under repos section

- repo: https://github.com/honeydipper/honeydipper-config-essentials
branch: main

4.2 Drivers

This repo provides following drivers

4.2.1 api-broadcast

This driver shares the code with redispubsub driver. The purpose is provide a abstract feature for services to make
broadcasts to each other. The current redispubsub driver offers a few functions through a call_driver. Once the
DipperCL offers call_feature statement, we can consolidate the loading of the two drivers into one.

Configurations

connection The parameters used for connecting to the redis including Addr, Username, Password and
DB.

connection.TLS.Enabled Accept true/false. Use TLS to connect to the redis server, support TLS1.2 and
above.

connection.TLS.InsecureSkipVerify Accept true/false. Skip verifying the server certificate. If enabled,
TLS is susceptible to machine-in-the-middle attacks.

59

Honeydipper Configurations, Release 1.0.0

connection.TLS.VerifyServerName When connecting using an IP instead of DNS name, you can over-
ride the name used for verifying

against the server certificate. Or, use "*" to accept any name or certificates without a valid common name as DNS
name, no subject altertive names defined.

connection.TLS.CACerts A list of CA certificates used for verifying the server certificate. These cer-
tificates are added on top

of system defined CA certificates. See Here for description on where the system defined CA certificates are.

See below for an example

drivers:
redispubsub:
connection:

Addr: 192.168.2.10:6379
DB: 2
Password: ENC[gcloud-kms,...masked]
TLS:

Enabled: true
VerifyServerName: "*"
CACerts:
- |
----- BEGIN CERTIFICATE -----
...
----- END CERTIFICATE -----

This driver doesn’t offer any actions or functions.

4.2.2 auth-simple

This driver provides RPCs for the API serive to authenticate the incoming requests. The supported method includes
basic authentication, and token authentication. This also acts as a reference on how to implement authentication for
honeydipper APIs.

Configurations

schemes a list of strings indicating authenticating methods to try, support basic and token.

users a list of users for basic authentication.

users.name the name of the user

users.pass the password (use encryption)

users.subject a structure describing the credential, used for authorization

tokens a map of tokens to its subjects, each subject is a structure describing

the credential, used for authorization.

See below for an example

drivers:
auth-simple:
schemes:

- basic
- token

(continues on next page)

60 Chapter 4. Essentials

https://pkg.go.dev/crypto/x509#SystemCertPool

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

users:
- name: user1

pass: ENC[...]
subject:
group: engineer
role: viewer

- name: admin
pass: ENC[...]
subject:
group: sre
role: admin

tokens:
ioefui3wfjejfasf:

subject:
group: machine
role: viewer

This driver doesn’t offer any actions or functions.

4.2.3 kubernetes

This driver enables Honeydipper to interact with kubernetes clusters including finding and recycling deployments,
running jobs and getting job logs, etc. There a few wrapper workflows around the driver and system functions, see the
workflow composing guide for detail. This section provides information on how to configure the driver and what the
driver offers as rawActions, the information may be helpful for understanding how the kubernetes workflow works.

Action: createJob

Start a run-to-complete job in the specified cluster. Although you can, it is not recommended to use this rawAction
directly. Use the wrapper workflows instead.

Parameters

type The type of the kubernetes cluster, basically a driver that provides a RPC call for fetching the
kubeconfig from. currently only gcloud-gke and local is supported, more types to be added in the
future.

source A list of k/v pair as parameters used for making the RPC call to fetch the kubeconfig. For local,
no value is required, the driver will try to use in-cluster configurations. For gcloud-gke clusters, the
k/v pair should have keys including service_account, project, zone and cluster.

namespace The namespace for the job

job the job object following the kubernetes API schema

Returns

metadata The metadata for the created kubernetes job

status The status for the created kuberntes job

See below for a simple example

workflows:
call_driver: kubernetes.createJob
with:

(continues on next page)

4.2. Drivers 61

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

type: local
namespace: test
job:

apiVersion: batch/v1
kind: Job
metadata:
name: pi

spec:
template:
spec:

containers:
- name: pi
image: perl
command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

restartPolicy: Never
backoffLimit: 4

Action: recycleDeployment

recycle a deployment by deleting the replicaset and let it re-spawn.

Parameters

type The type of the kubernetes cluster, see createJob rawAction for detail

source A list of k/v pair as parameters used for getting kubeconfig, see createJob rawAction for detail

namespace The namespace for the deployment to be recycled, default if not specified

deployment a label selector for identifying the deployment, e.g. run=my-app, app=nginx

See below for a simple example

rules:

- when:
source:

system: alerting
trigger: fired

do:
call_driver: kubernetes.recycleDeployment
with:
type: gcloud-gke
source:
service_account: ENC[gcloud-kms, ...masked...]
zone: us-central1-a
project: foo
cluster: bar

deployment: run=my-app

Action: getJobLog

Given a kubernetes job metadata name, fetch and return all the logs for this job. Again, it is not recommended to use
createJob, waitForJob or getJobLog directly. Use the helper workflows instead.

Parameters

62 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

type The type of the kubernetes cluster, see createJob rawAction for detail

source A list of k/v pair as parameters used for getting kubeconfig, see createJob rawAction for detail

namespace The namespace for the job

job The metadata name of the kubernetes job

Returns

log mapping from pod name to a map from container name to the logs

output with all logs concatinated

See below for a simple example

workflows:
run_job:
steps:

- call_driver: kubernetes.createJob
with:
type: local
job:
apiVersion: batch/v1
kind: Job
metadata:
name: pi

spec:
template:

spec:
containers:
- name: pi
image: perl
command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

restartPolicy: Never
backoffLimit: 4

- call_driver: kubernetes.waitForJob
with:
type: local
job: $data.metadta.name

- call_driver: kubernetes.getJobLog
with:
type: local
job: $data.metadta.name

Action: waitForJob

Given a kubernetes job metadata name, use watch API to watch the job until it reaches a terminal state. This action
usually follows a createJob call and uses the previous call’s output as input. Again, it is not recommended to use
createJob, waitForJob or getJobLog directly. Use the helper workflows instead.

Parameters

type The type of the kubernetes cluster, see createJob rawAction for detail

source A list of k/v pair as parameters used for getting kubeconfig, see createJob rawAction for detail

namespace The namespace for the job

job The metadata name of the kubernetes job

4.2. Drivers 63

Honeydipper Configurations, Release 1.0.0

timeout The timeout in seconds

Returns

status The status for the created kuberntes job

See below for a simple example

workflows:
run_job:
steps:

- call_driver: kubernetes.createJob
with:
type: local
job:
apiVersion: batch/v1
kind: Job
metadata:
name: pi

spec:
template:

spec:
containers:
- name: pi
image: perl
command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

restartPolicy: Never
backoffLimit: 4

- call_driver: kubernetes.waitForJob
with:
type: local
job: $data.metadta.name

4.2.4 redislock

redislock driver provides RPC calls for the services to acquire locks for synchronize and coordinate between instances.

Configurations

connection The parameters used for connecting to the redis including Addr, Username, Password and
DB.

connection.TLS.Enabled Accept true/false. Use TLS to connect to the redis server, support TLS1.2 and
above.

connection.TLS.InsecureSkipVerify Accept true/false. Skip verifying the server certificate. If enabled,
TLS is susceptible to machine-in-the-middle attacks.

connection.TLS.VerifyServerName When connecting using an IP instead of DNS name, you can over-
ride the name used for verifying

against the server certificate. Or, use "*" to accept any name or certificates without a valid common name as DNS
name, no subject altertive names defined.

connection.TLS.CACerts A list of CA certificates used for verifying the server certificate. These cer-
tificates are added on top

of system defined CA certificates. See Here for description on where the system defined CA certificates are.

See below for an example

64 Chapter 4. Essentials

https://pkg.go.dev/crypto/x509#SystemCertPool

Honeydipper Configurations, Release 1.0.0

drivers:
redislock:
connection:

Addr: 192.168.2.10:6379
DB: 2
Password: ENC[gcloud-kms,...masked]
TLS:

Enabled: true
VerifyServerName: "*"
CACerts:
- |
----- BEGIN CERTIFICATE -----
...
----- END CERTIFICATE -----

This drive doesn’t offer any raw actions as of now.

4.2.5 redispubsub

redispubsub driver is used internally to facilitate communications between different components of Honeydipper sys-
tem.

Configurations

connection The parameters used for connecting to the redis including Addr, Username, Password and
DB.

connection.TLS.Enabled Accept true/false. Use TLS to connect to the redis server, support TLS1.2 and
above.

connection.TLS.InsecureSkipVerify Accept true/false. Skip verifying the server certificate. If enabled,
TLS is susceptible to machine-in-the-middle attacks.

connection.TLS.VerifyServerName When connecting using an IP instead of DNS name, you can over-
ride the name used for verifying

against the server certificate. Or, use "*" to accept any name or certificates without a valid common name as DNS
name, no subject altertive names defined.

connection.TLS.CACerts A list of CA certificates used for verifying the server certificate. These cer-
tificates are added on top

of system defined CA certificates. See Here for description on where the system defined CA certificates are.

See below for an example

drivers:
redispubsub:
connection:

Addr: 192.168.2.10:6379
DB: 2
Password: ENC[gcloud-kms,...masked]
TLS:

Enabled: true
VerifyServerName: "*"
CACerts:
- |

(continues on next page)

4.2. Drivers 65

https://pkg.go.dev/crypto/x509#SystemCertPool

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

----- BEGIN CERTIFICATE -----
...
----- END CERTIFICATE -----

Action: send

broadcasting a dipper message to all Honeydipper services. This is used in triggering configuration reloading and
waking up a suspended workflow. The payload of rawAction call will used as broadcasting dipper message paylod.

Parameters

broadcastSubject the subject field of the dipper message to be sent

Below is an example of using the driver to trigger a configuration reload

workflows:
reload:
call_driver: redispubsub.send
with:
broadcastSubject: reload
force: $?ctx.force

Below is another example of using the driver to wake up a suspended workflow

workflows:
resume_workflow:
call_driver: redispubsub.send
with:
broadcastSubject: resume_session
key: $ctx.resume_token
labels:

status: $ctx.labels_status
reason: $?ctx.labels_reason

payload: $?ctx.resume_payload

4.2.6 redisqueue

redisqueue driver is used internally to facilitate communications between different components of Honeydipper sys-
tem. It doesn’t offer rawActions or rawEvents for workflow composing.

Configurations

connection The parameters used for connecting to the redis including Addr, Username, Password and
DB.

connection.TLS.Enabled Accept true/false. Use TLS to connect to the redis server, support TLS1.2 and
above.

connection.TLS.InsecureSkipVerify Accept true/false. Skip verifying the server certificate. If enabled,
TLS is susceptible to machine-in-the-middle attacks.

connection.TLS.VerifyServerName When connecting using an IP instead of DNS name, you can over-
ride the name used for verifying

66 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

against the server certificate. Or, use "*" to accept any name or certificates without a valid common name as DNS
name, no subject altertive names defined.

connection.TLS.CACerts A list of CA certificates used for verifying the server certificate. These cer-
tificates are added on top

of system defined CA certificates. See Here for description on where the system defined CA certificates are.

See below for an example

drivers:
redisqueue:
connection:

Addr: 192.168.2.10:6379
DB: 2
Password: ENC[gcloud-kms,...masked]
TLS:

Enabled: true
VerifyServerName: "*"
CACerts:
- |
----- BEGIN CERTIFICATE -----
...
----- END CERTIFICATE -----

4.2.7 web

This driver enables Honeydipper to make outbound web requests

Action: request

making an outbound web request

Parameters

URL The target url for the outbound web request

header A list of k/v pair as headers for the web request

method The method for the web request

content Form data, post data or the data structure encoded as json for application/json content-type

Returns

status_code HTTP status code

cookies A list of k/v pair as cookies received from the web server

headers A list of k/v pair as headers received from the web server

body a string contains all response body

json if the return is json content type, this will be parsed json data blob

See below for a simple example

4.2. Drivers 67

https://pkg.go.dev/crypto/x509#SystemCertPool

Honeydipper Configurations, Release 1.0.0

workflows:
sending_request:
call_driver: web.request
with:
URL: https://ifconfig.co

Below is an example of specifying header for the outbound request defined through a system function

systems:
my_api_server:
data:
token: ENC[gcloud-kms,...masked...]
url: https://foo.bar/api

function:
secured_api:

driver: web
parameters:
URL: $sysData.url
header:

Authorization: Bearer {{ .sysData.token }}
content-type: application.json

rawAction: request

4.2.8 webhook

This driver enables Honeydipper to receive incoming webhooks to trigger workflows

Configurations

Addr the address and port the webhook server is listening to

for example

drivers:
webhook:
Addr: :8080 # listening on all IPs at port 8080

Event: <default>

receiving an incoming webhook

Returns

url the path portion of the url for the incoming webhook request

method The method for the web request

form a list of k/v pair as query parameters from url parameter or posted form

headers A list of k/v pair as headers received from the request

host The host part of the url or the Host header

remoteAddr The client IP address and port in the form of xx.xx.xx.xx:xxxx

json if the content type is application/json, it will be parsed and stored in here

68 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

The returns can also be used in matching conditions

See below for a simple example

rules:
- do:

call_workflow: foobar
when:
driver: webhook
if_match:

form:
s: hello

headers:
content-type: application/x-www-form-urlencoded

method: POST
url: /foo/bar

Below is an example of defining and using a system trigger with webhook driver

systems:
internal:
data:
token: ENC[gcloud-kms,...masked...]

trigger:
webhook:
driver: webhook
if_match:
headers:

Authorization: Bearer {{ .sysData.token }}
remoteAddr: :regex:^10\.

rules:
- when:

source:
system: internal
trigger: webhook

if_match:
url: /foo/bar

do:
call_workflow: do_something

4.3 Systems

4.3.1 circleci

This system enables Honeydipper to integrate with circleci, so Honeydipper can trigger pipelines in circleci.

Configurations

circle_token The token for making API calls to circleci.

url The base url of the API calls, defaults to https://circleci.com/api/v2

org The default org name

Function: add_env_var

Add env var to a project.

4.3. Systems 69

Honeydipper Configurations, Release 1.0.0

Input Contexts

vcs The VCS system integrated with this circle project, github (default) or bitbucket.

git_repo The repo that the env var is for, e.g. myorg/myrepo, takes precedent over repo.

repo The repo name that the env var is for, without the org, e.g. myrepo

name Env var name

value Env var value

Function: api

This is a generic function to make a circleci API call with the configured token. This function is meant to be used for
defining other functions.

Function: start_pipeline

This function will trigger a pipeline in the given circleci project and branch.

Input Contexts

vcs The VCS system integrated with this circle project, github (default) or bitbucket.

git_repo The repo that the pipeline execution is for, e.g. myorg/myrepo, takes precedent over repo.

repo The repo name that the pipeline execution is for, without the org, e.g. myrepo

git_branch The branch that the pipeline execution is on.

pipeline_parameters The parameters passed to the pipeline.

See below for example

rules:

- when:
driver: webhook
if_match:

url: /from_circle
export:

git_repo: $event.form.git_repo.0
git_branch: $event.form.git_branch.0
ci_workflow: $event.form.ci_workflow.0

do:
call_workflow: process_and_return_to_circle

workflows:
process_and_return_to_circle:
on_error: continue
steps:

- call_workflow: $ctx.ci_workflow
export_on_success:
pipeline_parameters:

deploy_success: "true"
- call_function: circleci.start_pipeline

Your circleci.yaml might look like below

70 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

jobs:
version: 2
deploy:
unless: << pipeline.parameters.via.honeydipper >>
steps:

- ...
- run: curl <honeydipper webhook> # trigger workflow on honeydipper

continue_on_success:
when: << pipeline.parameters.deploy_success >>
steps:

- ...
- run: celebration

continue_on_failure:
when:

and:
- << pipeline.parameters.via.honeydipper >>
- not: << pipeline.parameters.deploy_success >>

steps:
- ...
- run: recovering
- run: # return error here

workflows:
version: 2
deploy:
jobs:

- deploy
- continue_on_success
- continue_on_failure

filters:
branches:

only: /^main$/

For detailed information on conditional jobs and workflows please see the circleci support document.

4.3.2 codeclimate

This system enables Honeydipper to integrate with CodeClimate.

Configurations

api_key The token for authenticating with CodeClimate

url The CodeClimate API URL

org For private repos, this is the default org name

org_id For private repos, this is the default org ID

For example

systems:
codeclimate:
data:
api_key: ENC[gcloud-kms,...masked...]
url: "https://api.codeclimate.com/v1"

4.3. Systems 71

https://support.circleci.com/hc/en-us/articles/360043638052-Conditional-steps-in-jobs-and-conditional-workflows

Honeydipper Configurations, Release 1.0.0

To configure the integration in CodeClimate,

1. navigate to User Settings => API Access

2. generate a new token, and record it as api_key in system data

Function: add_private_repo

Add a private GitHub repository to Code Climate.

Input Contexts

org_id Code Climate organization ID, if missing use pre-configured sysData.org_id

org Github organization name, if missing use pre-configured sysData.org

repo Github repository name

Function: add_public_repo

Add a GitHub open source repository to Code Climate.

Input Contexts

repo The repo to add, e.g. myuser/myrepo

Function: api

This is a generic function to make a circleci API call with the configured token. This function is meant to be used for
defining other functions.

Function: get_repo_info

Get repository information

Input Contexts

org Github organization name, if missing use pre-configured sysData.org

repo Github repository name

4.3.3 github

This system enables Honeydipper to integrate with github, so Honeydipper can react to github events and take actions
on github.

Configurations

oauth_token The token or API ID used for making API calls to github

token A token used for authenticate incoming webhook requests, every webhook request must carry a
form field Token in the post body or url query that matches the value

path The path portion of the webhook url, by default /github/push

For example

72 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

systems:
github:
data:

oauth_token: ENC[gcloud-kms,...masked...]
token: ENC[gcloud-kms,...masked...]
path: "/webhook/github"

Assuming the domain name for the webhook server is :code:‘myhoneydipper.com’, you should configure the webhook
in your repo with url like below

Trigger: commit_status

This is triggered when a github commit status is updated.

Matching Parameters

.json.repository.full_name Specify this in the when section of the rule using if_match, to filter the
events for the repo

.json.branches.name This field is to match only the status events happened on certain branches

.json.context This field is to match only the status events with certain check name, e.g. ci/circleci:
yamllint

.json.state This field is to match only the status events with certain state, pending,
success`(default), :code:`failure or error

Export Contexts

git_repo This context variable will be set to the name of the repo, e.g. myorg/myrepo

branches A list of branches that contain the commit

git_commit This context variable will be set to the short (7 characters) commit hash of the head commit
of the push

git_status_state This context variable will be set to the state of the status, e.g. pending, success,
failure or error

git_status_context This context variable will be set to the name of the status, e.g. ci/circleci:
yamllint

git_status_description This context variable will be set to the description of the status, e.g. Your
tests passed on CircleCI!

See below snippet for example

rules:

- when:
source:

system: github
trigger: commit_status

if_match:
json:
repository:

full_name: myorg/myrepo # .json.repository.full_name
branches:

name: main # .json.branches.name

(continues on next page)

4.3. Systems 73

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

context: mycheck # .json.context
state: success # .json.state

do:
call_workflow: do_something
following context variables are available
git_repo
branches
git_commit
git_status_state
git_status_context
git_status_description
#

Trigger: hit

This is a catch all event for github webhook requests. It is not to be used directly, instead should be used as source for
defining other triggers.

Trigger: pr_comment

This is triggered when a comment is added to a pull request.

Matching Parameters

.json.repository.full_name This field is to match only the pull requests from certain repo

.json.comment.user.login This is to match only the comments from certain username

.json.comment.author_association This is to match only the comments from certain type of user. See
github API reference here for detail.

.json.comment.body This field contains the comment message, you can use regular express pattern to
match the content of the message.

Export Contexts

git_repo This context variable will be set to the name of the repo, e.g. myorg/myrepo

git_user This context variable will be set to the user object who made the comment

git_issue This context variable will be set to the issue number of the PR

git_message This context variable will be set to the comment message

See below snippet for example

rules:

- when:
source:

system: github
trigger: pr_commented

if_match:
json:
repository:

full_name: myorg/myrepo # .json.repository.full_name
comment:
autho_association: CONTRIBUTOR

(continues on next page)

74 Chapter 4. Essentials

https://developer.github.com/v4/enum/commentauthorassociation/

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

body: ':regex:^\s*terraform\s+plan\s*$'
do:

call_workflow: do_terraform_plan
following context variables are available
git_repo
git_issue
git_message
git_user
#

Trigger: pull_request

This is triggered when a new pull request is created

Matching Parameters

.json.repository.full_name This field is to match only the pull requests from certain repo

.json.pull_request.base.ref This field is to match only the pull requests made to certain base branch,
note that the ref value here does not have the ref/heads/ prefix (different from push event). So
to match master branch, just use master instead of ref/heads/master.

.json.pull_request.user.login This field is to match only the pull requests made by certain user

Export Contexts

git_repo This context variable will be set to the name of the repo, e.g. myorg/myrepo

git_ref This context variable will be set to the name of the branch, e.g. mybrach, no ref/heads/
prefix

git_commit This context variable will be set to the short (7 characters) commit hash of the head commit
of the PR

git_user This context variable will be set to the user object who created the PR

git_issue This context variable will be set to the issue number of the PR

git_title This context variable will be set to the title of the PR

See below snippet for example

rules:

- when:
source:

system: github
trigger: pull_request

if_match:
json:
repository:

full_name: myorg/myrepo # .json.repository.full_name
pull_request:
base:
ref: master # .json.pull_request.base.ref

do:
call_workflow: do_something
following context variables are available
git_repo

(continues on next page)

4.3. Systems 75

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

git_ref
git_commit
git_issue
git_title
git_user
#

Trigger: push

This is triggered when github receives a push.

Matching Parameters

.json.repository.full_name Specify this in the when section of the rule using if_match, to filter the
push events for the repo

.json.ref This field is to match only the push events happened on certain branch

Export Contexts

git_repo This context variable will be set to the name of the repo, e.g. myorg/myrepo

git_ref This context variable will be set to the name of the branch, e.g. ref/heads/mybrach

git_commit This context variable will be set to the short (7 characters) commit hash of the head commit
of the push

See below snippet for example

rules:

- when:
source:

system: github
trigger: push

if_match:
json:
repository:

full_name: myorg/myrepo # .json.repository.full_name
ref: ref/heads/mybranch # .json.ref

do:
call_workflow: do_something
following context variables are available
git_repo
git_ref
git_commit
#

Or, you can match the conditions in workflow using exported context variables instead of in the rules

rules:

- when:
source:

system: github
trigger: push

do:
if_match:

(continues on next page)

76 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

- git_repo: mycompany/myrepo
git_ref: ref/heads/master

- git_repo: myorg/myfork
git_ref: ref/heads/mybranch

call_workflow: do_something

Function: addRepoToInstallation

This function will add a repo into an installed github app

Input Contexts

installation_id The installation_id of your github app

repoid The Id of your github repository

See below for example

rules:

- when:
driver: webhook
if_match:

url: /addrepoinstallation
do:

call_workflow: github_add_repo_installation

workflows:
github_add_repo_installation:
call_function: github.addRepoToInstallation
with:

repoid: 12345678
intallationid: 12345678

Function: api

This is a generic function to make a github API call with the configured oauth_token. This function is meant to be
used for defining other functions.

Input Contexts

resource_path This field is used as the path portion of the API call url

Function: createComment

This function will create a comment on the given PR

Input Contexts

git_repo The repo that commit is for, e.g. myorg/myrepo

git_issue The issue number of the PR

message The content of the comment to be posted to the PR

See below for example

4.3. Systems 77

Honeydipper Configurations, Release 1.0.0

rules:

- when:
source:

system: github
trigger: pull_request

do:
if_match:
git_repo: myorg/myrepo
git_ref: master

call_function: github.createComment
with:
the git_repo is available from event export
the git_issue is available from event export
message: type `honeydipper help` to see a list of available commands

Function: createPR

This function will create a pull request with given infomation

Input Contexts

git_repo The repo that the new PR is for, e.g. myorg/myrepo

PR_content The data structure to be passed to github for creating the PR, see here for detail

See below for example

rules:

- when:
driver: webhook
if_match:

url: /createPR
do:

call_workflow: github_create_PR

workflows:
github_create_PR:
call_function: github.createPR
with:

git_repo: myorg/myreop
PR_content:

title: update the data
head: mybranch
body: |
The data needs to be updated

This PR is created using honeydipper

Function: createRepo

This function will create a github repository for your org

Input Contexts

org the name of your org

78 Chapter 4. Essentials

https://developer.github.com/v3/pulls/#input

Honeydipper Configurations, Release 1.0.0

name The name of your repository

private privacy of your repo, either true or false(it’s default to false if not declared)

See below for example

rules:

- when:
driver: webhook
if_match:

url: /createrepo
do:

call_workflow: github_create_repo

workflows:
github_create_repo:
call_function: github.createRepo
with:

org: testing
name: testing-repo

Function: createStatus

This function will create a commit status on the given commit.

Input Contexts

git_repo The repo that commit is for, e.g. myorg/myrepo

git_commit The short commit hash for the commit the status is for

context the status context, a name for the status message, by default Honeydipper

status the status data structure according github API here

See below for example

rules:

- when:
source:

system: github
trigger: push

do:
if_match:
git_repo: myorg/myrepo
git_ref: ref/heads/testbranch

call_workflow: post_status

workflows:
post_status:
call_function: github.createStatus
with:

the git_repo is available from event export
the git_commit is available from event export
status:

state: pending
description: Honeydipper is scanning your commit ...

4.3. Systems 79

https://developer.github.com/v3/repos/statuses/#parameters

Honeydipper Configurations, Release 1.0.0

Function: getContent

This function will fetch a file from the specified repo and branch.

Input Contexts

git_repo The repo from where to download the file, e.g. myorg/myrepo

git_ref The branch from where to download the file, no ref/heads/ prefix, e.g. master

path The path for fetching the file, no slash in the front, e.g. conf/nginx.conf

Export Contexts

file_content The file content as a string

See below for example

workflows:
fetch_circle:
call_function: github.getContent
with:

git_repo: myorg/mybranch
git_ref: master
path: .circleci/config.yml

export:
circleci_conf: :yaml:{{ .ctx.file_content }}

Function: getRepo

This function will query the detailed information about the repo.

Input Contexts

git_repo The repo that the query is for, e.g. myorg/myrepo

See below for example

rules:

- when:
driver: webhook
if_match:

url: /displayRepo
do:

call_workflow: query_repo

workflows:
query_repo:
steps:

- call_function: github.getRepo
with:
git_repo: myorg/myreop

- call_workflow: notify
with:
message: The repo is created at {{ .ctx.repo.created_at }}

80 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

Function: mergeBranch

This function will merge the head branch into base branch with a merge commit.

Input Contexts

git_repo The repo where the merge operation takes place, e.g. myorg/myrepo

base_branch The base branch to merge into, no refs/heads/ prefix, e.g. main or staging etc.

head_branch The head branch where the changes are, e.g. my-patch, fix-issue-123 etc.

commit_message The message for the merge commit. for example merged by Honeydipepr

Export Contexts

merge_commit_sha The sha for the merge commit.

See below for example

workflows:
merge_work_branch:
call_function: github.mergeBranch
with:

git_repo: myorg/mybranch
base_branch: main
head_branch: mywork
commit_messga: |

chore(release): release

Work is done. Released!

Function: removeRepoFromInstallation

This function will remove a repo from an installed github app

Input Contexts

installation_id The installation_id of your github app

repoid The Id of your github repository

See below for example

rules:

- when:
driver: webhook
if_match:

url: /removerepoinstallation
do:

call_workflow: github_remove_repo_installation

workflows:
github_remove_repo_installation:
call_function: github.removeRepoFromInstallation
with:

repoid: 12345678
intallationid: 12345678

4.3. Systems 81

Honeydipper Configurations, Release 1.0.0

Function: updateRef

This function will update the ref to point to a new commit, in other words, push the new commit into the branch. No
force push is allowed, so there is no overwriting.

Input Contexts

git_repo The repo where the update takes place, e.g. myorg/myrepo

git_ref The ref/branch to be updated, must with prefix refs/heads/, e.g. refs/heads/main or
refs/heads/staging etc.

git_commit_full The git commit full sha for the new commit.

See below for example

workflows:
releaseStagingToMain:
with:
git_repo: myorg/mybranch

steps:
- call_function: github.mergeBranch

with:
base_branch: main
head_branch: staging
commit_messga: |

chore(release): release

Test is done. Released!
- call_function: github.updateRef

with:
git_ref: refs/heads/staging
git_commit_full: $ctx.merge_commit_sha

4.3.4 jira

This system enables Honeydipper to integrate with jira, so Honeydipper can react to jira events and take actions on
jira.

Configurations

jira_credential The credential used for making API calls to jira

token A token used for authenticate incoming webhook requests, every webhook request must carry a
form field Token in the post body or url query that matches the value

path The path portion of the webhook url, by default /jira

jira_domain Specify the jira domain, e.g. mycompany for mycompany.atlassian.net

jira_domain_base The DNS zone of the jira API urls, in case of accessing self hosted jira, defaults to
atlassian.net

For example

systems:
github:
data:

(continues on next page)

82 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

jira_credential: ENC[gcloud-kms,...masked...]
jira_domain: mycompany
token: ENC[gcloud-kms,...masked...]
path: "/webhook/jira"

Assuming the domain name for the webhook server is :code:‘myhoneydipper.com’, you should configure the webhook
in your repo with url like below

Trigger: hit

This is a generic trigger for jira webhook events.

Function: addComment

This function will add a comment to the jira ticket

Input Contexts

jira_ticket The ticket number that the comment is for

comment_body Detailed description of the comment

See below for example

workflows:
post_comments:
call_function: jira.addComment
with:

jira_ticket: $ctx.jira_ticket
comment_body: |

Ticket has been created by Honeydipper.

Function: createTicket

This function will create a jira ticket with given information, refer to ‘jira rest API
document<https://developer.atlassian.com/cloud/jira/platform/rest/v3/api-group-issues/#api-rest-api-3-issue-
post>‘_ for description of the fields and custom fields.

Input Contexts

ticket.project.key The name of the jira project the ticket is created in

ticket.summary A summary of the ticket

ticket.description Detailed description of the work for this ticket

ticket.issuetype.name The ticket type

ticket.components Optional, a list of components associated with the ticket

ticket.labels Optional, a list of strings used as labels

Export Contexts

jira_ticket The ticket number of the newly created ticket

See below for example

4.3. Systems 83

Honeydipper Configurations, Release 1.0.0

workflows:
create_jira_ticket:
call_function: jira.createTicket
with:

ticket:
project:
key: devops

issuetype:
name: Task

summary: upgrading kubernetes
description: |
Upgrade the test cluster to kubernetes 1.16

components:
- name: GKE
- name: security

labels:
- toil
- small

4.3.5 kubernetes

This system enables Honeydipper to interact with kubernetes clusters. This system is intended to be extended to create
systems represent actual kubernetes clusters, instead of being used directly.

Configurations

source The parameters used for fetching kubeconfig for accessing the cluster, should at least contain a
type field. Currently, only local or gcloud-gke are supported. For gcloud-gke type, this
should also include service_account, project, zone, and cluster.

namespace The namespace of the resources when operating on the resources within the cluster, e.g.
deployments. By default, default namespace is used.

For example

systems:
my_gke_cluster:
extends:
- kubernetes

data:
source:

type: gcloud-gke
service_account: ENC[gcloud-kms,...masked...]
zone: us-central1-a
project: foo
cluster: bar

namespace: mynamespace

Function: createJob

This function creates a k8s run-to-completion job with given job spec data structure. It is a wrapper for the kuber-
netes driver createJob rawAction. It leverages the pre-configured system data to access the kubernetes cluster. It is
recommmended to use the helper workflows instead of using the job handling functions directly.

84 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

Input Contexts

job The job data structure following the specification for a run-to-completion job manifest yaml file.

fromCronJob Creating the job based on the definition of a cronjob, in the form of namespace/
cronjob. If the namespace is omitted, the current namespace where the job is being created
will be used for looking up the cronjob.

Export Contexts

jobid The job ID of the created job

See below for example

workflow:

create_job:
call_function: my-k8s-cluster.createJob
with:

job:
apiVersion: batch/v1
kind: Job
metadata:
name: pi

spec:
template:

spec:
containers:
- name: pi
image: perl
command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

restartPolicy: Never
backoffLimit: 4

Function: deleteJob

This function deletes a kubernetes job specified by the job name in .ctx.jobid. It leverages the pre-configured
system data to access the kubernetes cluster.

Input Contexts

jobid The name of the kubernetes job

See below for example

workflows:
run_myjob:
- call_function: myk8scluster.createJob

...
this function exports .ctx.jobid

- call_function: myk8scluster.waitForJob
...

- call_function: myk8scluster.deleteJob

This function is not usually used directly by users. It is added to the run_kubernetes workflow so that, upon successful
completion, the job will be deleted. In rare cases, you can use the wrapper workflow cleanup_k8s_job to delete a job.

4.3. Systems 85

Honeydipper Configurations, Release 1.0.0

Function: getJobLog

This function fetch all the logs for a k8s job with the given jobid. It is a wrapper for the kubernetes driver getJobLog
rawAction. It leverages the pre-configured system data to access the kubernetes cluster. It is recommmended to use
the helper workflows instead of using the job handling functions directly.

Input Contexts

job The ID of the job to fetch logs for

Export Contexts

log The logs organized in a map of pod name to a map of container name to logs.

output The logs all concatinated into a single string

See below for example

workflow:

run_simple_job:
steps:

- call_function: my-k8s-cluster.createJob
with:
job: $ctx.job

- call_function: my-k8s-cluster.waitForJob
with:
job: $ctx.jobid

- call_workflow: my-k8s-cluster.getJobLog
with:
job: $ctx.jobid

Function: recycleDeployment

This function is a wrapper to the kubernetes driver recycleDeployment rawAction. It leverages the pre-configured
system data to access the kubernetes cluster.

Input Contexts

deployment The selector for identify the deployment to restart, e.g. app=nginx

See below for example

rules:

- when:
source:

system: opsgenie
trigger: alert

do:
steps:

- if_match:
alert_message: :regex:foo-deployment

call_function: my-k8s-cluster.recycleDeployment
with:
deployment: app=foo

- if_match:
alert_message: :regex:bar-deployment

call_function: my-k8s-cluster.recycleDeployment

(continues on next page)

86 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

with:
deployment: app=bar

Function: waitForJob

This function blocks and waiting for a k8s run-to-completion job to finish. It is a wrapper for the kubernetes driver
waitForJob rawAction. It leverages the pre-configured system data to access the kubernetes cluster. It is recomm-
mended to use the helper workflows instead of using the job handling functions directly.

Input Contexts

job The job id that the function will wait for to reach terminated states

Export Contexts

job_status The status of the job, either success or failure

See below for example

workflow:

run_simple_job:
steps:

- call_function: my-k8s-cluster.createJob
with:
job: $ctx.job

- call_function: my-k8s-cluster.waitForJob
with:
job: $ctx.jobid

- call_workflow: notify
with:
message: the job status is {{ .job_status }}

4.3.6 opsgenie

This system enables Honeydipper to integrate with opsgenie, so Honeydipper can react to opsgenie alerts and take
actions through opsgenie API.

Configurations

API_KEY The API key used for making API calls to opsgenie

token A token used for authenticate incoming webhook requests, every webhook request must carry a
form field Token in the post body or url query that matches the value

path The path portion of the webhook url, by default /opsgenie

For example

systems:
opsgenie:
data:
API_KEY: ENC[gcloud-kms,...masked...]
token: ENC[gcloud-kms,...masked...]
path: "/webhook/opsgenie"

4.3. Systems 87

Honeydipper Configurations, Release 1.0.0

Assuming the domain name for the webhook server is :code:‘myhoneydipper.com’, you should configure the webhook
in your opsgenie integration with url like below

Trigger: alert

This event is triggered when an opsgenie alert is raised.

Matching Parameters

.json.alert.message This field can used to match alert with only certain messages

.json.alert.alias This field is to match only the alerts with certain alias

Export Contexts

alert_message This context variable will be set to the detailed message of the alert.

alert_alias This context variable will be set to the alias of the alert.

alert_Id This context variable will be set to the short alert ID.

alert_system This context variable will be set to the constant string, opsgenie

alert_url This context variable will be set to the url of the alert, used for creating links

See below snippet for example

rules:

- when:
source:

system: opsgenie
trigger: alert

if_match:
json:
alert:
message: :regex:^test-alert.*$

do:
call_workflow: notify
with:
message: 'The alert url is {{ .ctx.alert_url }}'

Function: contact

This function gets the user’s contact methods

Input Contexts

userId The ID of the user for which to get contact methods

Export Contexts

contacts The detail of user’s contact method in a map, or a list of user’s contact methods

See below for example

workflows:
steps:
- call_workflow: do_something
- call_function: opsgenie.contact

(continues on next page)

88 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

with:
userId: username@example.com

Function: heartbeat

This function will send a heartbeat request to opsgenie.

Input Contexts

heartbeat The name of the heartbeat as configured in your opsgenie settings

Export Contexts

result The return result of the API call

See below for example

workflows:
steps:
- call_workflow: do_something
- call_function: opsgenie.heartbeat
with:
heartbeat: test-heart-beat

Function: schedules

This function list all on-call schedules or fetch a schedule detail if given a schedule identifier.

Important: This function only fetches first 100 schedules when listing.

Input Contexts

scheduleId The name or ID or the schedule of interest; if missing, list all schedules.

scheduleIdType The type of the identifier, name or id.

Export Contexts

schedule For fetching detail, the data structure that contains the schedule detail

schedules For listing, a list of data structure contains the schedule details

See below for example

workflows:
steps:
- call_function: opsgenie.schedules

Function: snooze

This function will snooze the alert with given alert ID.

Input Contexts

4.3. Systems 89

Honeydipper Configurations, Release 1.0.0

alert_Id The ID of the alert to be snoozed

duration For how long the alert should be snoozed, use golang time format

Export Contexts

result The return result of the API call

See below for example

rules:

- when:
source:

system: opsgenie
trigger: alert

do:
if_match:
alert_message: :regex:test-alert

call_function: opsgenie.snooze
alert_Id is exported from the event

Function: users

This function gets the user detail with a given ID or list all users

Input Contexts

userId The ID of the user for which to get details; if missing, list users

offset Number of users to skip from start, used for paging

query Field:value combinations with most of user fields to make more advanced searches. Pos-
sible fields are username, fullName blocked, verified, role, locale, timeZone,
userAddress and createdAt

order The direction of the sorting, asc or desc, default is asc

sort The field used for sorting the result, could be username, fullname or insertedAt.

Export Contexts

user The detail of user in a map, or a list of users

users The detail of user in a map, or a list of users

opsgenie_offset The offset that can be used for continue fetching the rest of the users, for paging

See below for example

workflows:
steps:
- call_function: opsgenie.users

with:
query: username:foobar

Function: whoisoncall

This function gets the current on-call persons for the given schedule.

90 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

Important: Use the opsgenie_whoisoncall workflow instead.

Input Contexts

scheduleId The name or ID or the schedule of interest, required

scheduleIdType The type of the identifier, name or id.

flat If true, will only return the usernames, otherwise, will return all including notification, team etc.

Export Contexts

result the data portion of the json payload.

See below for example

workflows:
steps:
- call_function: opsgenie.whoisoncall

with:
scheduleId: sre_schedule

4.3.7 pagerduty

This system enables Honeydipper to integrate with pagerduty, so Honeydipper can react to pagerduty alerts and
take actions through pagerduty API.

Configurations

API_KEY The API key used for making API calls to pagerduty

signatureSecret The secret used for validating webhook requests from pagerduty

path The path portion of the webhook url, by default /pagerduty

For example

systems:
pagerduty:
data:

API_KEY: ENC[gcloud-kms,...masked...]
signatureSecret: ENC[gcloud-kms,...masked...]
path: "/webhook/pagerduty"

Assuming the domain name for the webhook server is :code:‘myhoneydipper.com’, you should configure the webhook
in your pagerduty integration with url like below

Trigger: alert

This event is triggered when an pagerduty incident is raised.

Matching Parameters

.json.event.data.title This field can used to match alert with only certain messages

.json.event.data.service.summary This field is to match only the alerts with certain service

4.3. Systems 91

Honeydipper Configurations, Release 1.0.0

Export Contexts

alert_message This context variable will be set to the detailed message of the alert.

alert_service This context variable will be set to the service of the alert.

alert_Id This context variable will be set to the short alert ID.

alert_system This context variable will be set to the constant string, pagerduty

alert_url This context variable will be set to the url of the alert, used for creating links

Pagerduty manages all the alerts through incidents. Although the trigger is named alert for compatibility reason, it
actually matches an incident.

See below snippet for example

rules:

- when:
source:

system: pagerduty
trigger: alert

if_match:
json:
data:

title: :regex:^test-alert.*$
do:

call_workflow: notify
with:
message: 'The alert url is {{ .ctx.alert_url }}'

Function: api

No description is available for this entry!

Function: getEscalationPolicies

No description is available for this entry!

Function: snooze

snooze pagerduty incident

Input Contexts

alert_Id The ID of the incident to be snoozed

duration For how long the incident should be snoozed, a number of seconds

Export Contexts

incident On success, returns the updated incident object

See below for example

92 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

rules:

- when:
source:

system: pagerduty
trigger: alert

if_match:
json:
title: :regex:test-alert

do:
call_function: pagerduty.snooze
with:
alert_Id is exported from the event
duration: 1200

Function: whoisoncall

This function gets the current on-call persons for the given schedule.

Important: This function only fetches first 100 schedules when listing. Use pagerduty_whoisoncall workflow
instead.

Input Contexts

escalation_policy_ids An array of IDs of the escalation policies; if missing, list all.

Export Contexts

result a list of data structure contains the schedule details. See API for detail.

See below for example

workflows:
until:
- $?ctx.EOL

steps:
- call_function: pagerduty.whoisoncall

no_export:
- offset
- EOL

4.3.8 slack

This system enables Honeydipper to integrate with slack, so Honeydipper can send messages to and react to commands
from slack channels. This system uses Custom Integrations to integrate with slack. It is recommended to use
slack_bot system, which uses a slack app to integrate with slack.

Configurations

url The slack incoming webhook integration url

slash_token The token for authenticating slash command requests

slash_path The path portion of the webhook url for receiving slash command requests, by default /
slack/slashcommand

4.3. Systems 93

https://developer.pagerduty.com/api-reference/reference/REST/openapiv3.json/paths/~1oncalls/get

Honeydipper Configurations, Release 1.0.0

For example

systems:
slack:
data:

url: ENC[gcloud-kms,...masked...]
slash_token: ENC[gcloud-kms,...masked...]
slash_path: "/webhook/slash"

To configure the integration in slack,

1. select from menu Administration => Manage Apps

2. select Custom Integrations

3. add a Incoming Webhooks, and copy the webhook url and use it as url in system data

4. create a random token to be used in slash command integration, and record it as slash_token in system data

5. add a Slash Commands, and use the url like below to send commands

Trigger: slashcommand

This is triggered when an user issue a slash command in a slack channel. It is recommended to use the helper workflows
and the predefined rules instead of using this trigger directly.

Matching Parameters

.form.text The text of the command without the prefix

.form.channel_name This field is to match only the command issued in a certain channel, this is only
available for public channels

.form.channel_id This field is to match only the command issued in a certain channel

.form.user_name This field is to match only the command issued by a certain user

Export Contexts

response_url Used by the reply function to send reply messages

text The text of the command without the slash word prefix

channel_name The name of the channel without # prefix, this is only available for public channels

channel_fullname The name of the channel with # prefix, this is only available for public channels

channel_id The IDof the channel

user_name The name of the user who issued the command

command The first word in the text, used as command keyword

parameters The remaining string with the first word removed

See below snippet for example

rules:

- when:
source:

system: slack
trigger: slashcommand

(continues on next page)

94 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

if_match:
form:
channel_name:
- public_channel1
- channel2

steps:
- call_function: slack.reply
with:
chat_colors:
this: good

message_type: this
message: command received `{{ .ctx.command }}`

- call_workflow: do_something

Function: add_response

No description is available for this entry!

Function: reply

This function send a reply message to a slash command request. It is recommended to use notify workflow instead
so we can manage the colors, message types and receipient lists through contexts easily.

Input Contexts

chat_colors a map from message_types to color codes

message_type a string that represents the type of the message, used for selecting colors

message the message to be sent

blocks construct the message using the slack layout blocks, see slack document for detail

See below for example

rules:

- when:
source:

system: slack
trigger: slashcommand

do:
call_function: slack.reply
with:
chat_colors:
critical: danger
normal: ""
error: warning
good: good
special: "#e432ad2e"

message_type: normal
message: I received your request.

4.3. Systems 95

Honeydipper Configurations, Release 1.0.0

Function: say

This function send a message to a slack channel slack incoming webhook. It is recommended to use notifyworkflow
instead so we can manage the colors, message types and receipient lists through contexts easily.

Input Contexts

chat_colors A map from message_types to color codes

message_type A string that represents the type of the message, used for selecting colors

message The message to be sent

channel_id The id of the channel the message is sent to. Use channel name here only when sending to a
public channel or to the home channel of the webhook.

blocks construct the message using the slack layout blocks, see slack document for detail

See below for example

rules:

- when:
source:

system: something
trigger: happened

do:
call_function: slack.say
with:
chat_colors:
critical: danger
normal: ""
error: warning
good: good
special: "#e432ad2e"

message_type: error
message: Something happened
channel_id: '#public_announce'

Function: send_message

No description is available for this entry!

Function: update_message

No description is available for this entry!

4.3.9 slack_bot

This system enables Honeydipper to integrate with slack, so Honeydipper can send messages to and react to commands
from slack channels. This system uses slack app to integrate with slack. It is recommended to use this instead of
slack system, which uses a Custom Integrations to integrate with slack.

Configurations

token The bot user token used for making API calls

slash_token The token for authenticating slash command requests

96 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

interact_token The token for authenticating slack interactive messages

slash_path The path portion of the webhook url for receiving slash command requests, by default /
slack/slashcommand

interact_path The path portion of the webhook url for receiving interactive component requests, by
default /slack/interact

For example

systems:
slack_bot:
data:

token: ENC[gcloud-kms,...masked...]
slash_token: ENC[gcloud-kms,...masked...]
interact_token: ENC[gcloud-kms,...masked...]
slash_path: "/webhook/slash"
interact_path: "/webhook/slash_interact"

To configure the integration in slack,

1. select from menu Administration => Manage Apps

2. select Build from top menu, create an app or select an exist app from Your Apps

3. add feature Bot User, and copy the Bot User OAuth Access Token and record it as token in sys-
tem data

4. create a random token to be used in slash command integration, and record it as slash_token in system data

5. add feature Slash Commands, and use the url like below to send commands

6. create another random token to be used in interactive components integration, and record it as
interact_token in system data

7. add feature interactive components and use url like below

Trigger: interact

This is triggered when an user responds to an interactive component in a message. This enables honeydipper to
interactively reacts to user choices through slack messages. A builtin rule is defined to respond to this trigger, so in
normal cases, it is not necessary to use this trigger directly.

Export Contexts

slack_payload The payload of the interactive response

Trigger: slashcommand

This is triggered when an user issue a slash command in a slack channel. It is recommended to use the helper workflows
and the predefined rules instead of using this trigger directly.

Matching Parameters

.form.text The text of the command without the prefix

.form.channel_name This field is to match only the command issued in a certain channel, this is only
available for public channels

.form.channel_id This field is to match only the command issued in a certain channel

4.3. Systems 97

Honeydipper Configurations, Release 1.0.0

.form.user_name This field is to match only the command issued by a certain user

Export Contexts

response_url Used by the reply function to send reply messages

text The text of the command without the slash word prefix

channel_name The name of the channel without # prefix, this is only available for public channels

channel_fullname The name of the channel with # prefix, this is only available for public channels

channel_id The IDof the channel

user_name The name of the user who issued the command

command The first word in the text, used as command keyword

parameters The remaining string with the first word removed

See below snippet for example

rules:

- when:
source:

system: slack
trigger: slashcommand

if_match:
form:
channel_name:
- public_channel1
- channel2

steps:
- call_function: slack.reply
with:

chat_colors:
this: good

message_type: this
message: command received `{{ .ctx.command }}`

- call_workflow: do_something

Function: add_response

No description is available for this entry!

Function: reply

This function send a reply message to a slash command request. It is recommended to use notify workflow instead
so we can manage the colors, message types and receipient lists through contexts easily.

Input Contexts

chat_colors a map from message_types to color codes

message_type a string that represents the type of the message, used for selecting colors

message the message to be sent

blocks construct the message using the slack layout blocks, see slack document for detail

See below for example

98 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

rules:

- when:
source:

system: slack
trigger: slashcommand

do:
call_function: slack.reply
with:
chat_colors:
critical: danger
normal: ""
error: warning
good: good
special: "#e432ad2e"

message_type: normal
message: I received your request.

Function: say

This function send a message to a slack channel slack incoming webhook. It is recommended to use notifyworkflow
instead so we can manage the colors, message types and receipient lists through contexts easily.

Input Contexts

chat_colors A map from message_types to color codes

message_type A string that represents the type of the message, used for selecting colors

message The message to be sent

channel_id The id of the channel the message is sent to. Use channel name here only when sending to a
public channel or to the home channel of the webhook.

blocks construct the message using the slack layout blocks, see slack document for detail

See below for example

rules:

- when:
source:

system: something
trigger: happened

do:
call_function: slack.say
with:
chat_colors:
critical: danger
normal: ""
error: warning
good: good
special: "#e432ad2e"

message_type: error
message: Something happened
channel_id: '#public_announce'

4.3. Systems 99

Honeydipper Configurations, Release 1.0.0

Function: send_message

No description is available for this entry!

Function: update_message

No description is available for this entry!

Function: users

This function queries all users for the team

Input Contexts

cursor Used for pagination, continue fetching from the cursor

Export Contexts

slack_next_cursor Used for pagination, used by next call to continue fetch

members A list of data structures containing member information

workflows:
get_all_slack_users:
call_function: slack_bot.users

4.4 Workflows

4.4.1 channel_translate

translate channel_names to channel_ids

Input Contexts

channel_names a list of channel names to be translated

channel_maps a map from channel names to ids

Export Contexts

channel_ids a list of channel ids corresponding to the input names

By pre-populating a map, we don’t have to make API calls to slack everytime we need to convert a channel name to a
ID.

This is used by slashcommand workflow and notify workflow to automatically translate the names.

workflows:
attention:
with:

channel_map:
'#private_channel1': UGKLASE
'#private_channel2': UYTFYJ2
'#private_channel3': UYUJH56
'#private_channel4': UE344HJ

(continues on next page)

100 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

'@private_user': U78JS2F
steps:

- call_workflow: channel_translate
with:
channel_names:
- '#private_channel1'
- '#private_channel3'
- '@private_user'
- '#public_channel1'

- call_workflow: loop_send_slack_message
with:
channel_ids:
- UGKLASE
- UYUJH56
- U78JS2F
- '#public_channel1' # remain unchanged if missing from the map

4.4.2 circleci_pipeline

This workflows wrap around the circleci.start_pipeline function so it can be used as a hook.

For example, below workflow uses a hook to invoke the pipeline.

rules:

- when:
driver: webhook
if_match:

url: /from_circle
export:

git_repo: $event.form.git_repo.0
git_branch: $event.form.git_branch.0
ci_workflow: $event.form.ci_workflow.0

do:
call_workflow: process_and_return_to_circle

workflows:
process_and_return_to_circle:
with:

hooks:
on_exit+:
- circleci_pipeline

steps:
- call_workflow: $ctx.ci_workflow

export_on_success:
pipeline_parameters:

deploy_success: "true"

4.4.3 cleanup_kube_job

delete a kubernetes job

Input Contexts

system The k8s system to use to delete the job

4.4. Workflows 101

Honeydipper Configurations, Release 1.0.0

no_cleanup_k8s_job If set to truthy value, will skip deleting the job

This workflow is intended to be invoked by run_kuberentes workflow as a hook upon successful completion.

4.4.4 codeclimate/add_private_repo

Add a private Github repository to Code Climate

4.4.5 codeclimate/add_public_repo

Add a public Github repository to Code Climate

4.4.6 inject_misc_steps

This workflow injects some helpful steps into the k8s job before making the API to create the job, based on the
processed job definitions. It is not recommended to use this workflow directly. Instead, use run_kubernetes to
leverage all the predefined context variables.

4.4.7 notify

send chat message through chat system

Input Contexts

chat_system A system name that supports reply and say function, can be either slack or
slack_bot, by default slack_bot.

notify A list of channels to which the message is beng sent, a special name reply means replying to the
slashcommand user.

notify_on_error A list of additional channels to which the message is beng sent if the message_type is
error or failure.

message_type The type of the message used for coloring, could be success, failure, error,
normal, warning, or announcement

chat_colors A map from message_type to color codes. This should usually be defined in default context
so it can be shared.

update Set to true to update a previous message identified with ts.

This workflow wraps around say and reply method, and allows multiple recipients.

For example

workflows:
attention:
call_workflow: notify
with:

notify:
- "#honeydipper-notify"
- "#myteam"

notify_on_error:
- "#oncall"

(continues on next page)

102 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

message_type: $labels.status
message: "work status is {{ .labels.status }}"

4.4.8 opsgenie_users

This workflow wraps around the opsgenie.users function and handles paging to get all users from Opsgenie.

4.4.9 opsgenie_whoisoncall

get opsgenie on call table

This workflow wraps around multiple api calls to opsgenie and produce a on_call_table datastructure.

Input Contexts

schedule_pattern Optional, the keyword used for filtering the on call schedules.

Export Contexts

on_call_table A map from on call schedule names to lists of users.

This is usually used for showing the on-call table in response to slash commands.

For example

workflows:
show_on_calls:
with:
alert_system: opsgenie

no_export:
- '*'

steps:
- call: '{{ .ctx.alert_system }}_whoisoncall'
- call: notify

with:
notify*:

- reply
response_type: in_channel
blocks:

- type: section
text:
type: mrkdn
text: |

===== On call users ======
{{- range $name, $users := .ctx.on_call_table }}

{{ $name }}: {{ join ", " $users }}
{{- end }}

4.4.10 pagerduty_whoisoncall

get pagerduty on call table

This workflow wraps around multiple api calls to pagerduty and produce a on_call_table datastructure.

Input Contexts

4.4. Workflows 103

Honeydipper Configurations, Release 1.0.0

tag_name Optional, the keyword used for filtering the on tags

schedule_pattern Optional, the keyword used for filtering the on-call escalation policies.

Export Contexts

on_call_table A map from on call schedule names to lists of users.

This is usually used for showing the on-call table in response to slash commands.

For example

workflows:
show_on_calls:
with:
alert_system: pagerduty

no_export:
- '*'

steps:
- call: '{{ .ctx.alert_system }}_whoisoncall'
- call: notify

with:
notify*:

- reply
response_type: in_channel
blocks:

- type: section
text:
type: mrkdn
text: |

===== On call users ======
{{- range $name, $users := .ctx.on_call_table }}

{{ $name }}: {{ join ", " $users }}
{{- end }}

4.4.11 reload

reload honeydipper config

Input Contexts

force If force is truy, Honeydipper will simply quit, expecting to be re-started by deployment manager.

For example

rules:

- when:
source:

system: slack_bot
trigger: slashcommand

do:
if_match:
command: reload

call_workflow: reload
with:
force: $?ctx.parameters

104 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

4.4.12 resume_workflow

resume a suspended workflow

Input Contexts

resume_token Every suspended workflow has a resume_token, use this to match the workflow to be
resumed

labels_status Continue the workflow with a dipper message that with the specified status

labels_reason Continue the workflow with a dipper message that with the specified reason

resume_payload Continue the workflow with a dipper message that with the given payload

For example

rules:

- when:
source:

system: slack_bot
trigger: interact

do:
call_workflow: resume_workflow
with:
resume_token: $ctx.slack_payload.callback_id
labels_status: success
resume_payload: $ctx.slack_payload

4.4.13 run_kubernetes

run kubernetes job

Input Contexts

system The k8s system to use to create and run the job

steps The steps that the job is made up with. Each step is an initContainer or a container. The
steps are executed one by one as ordered in the list. A failure in a step will cause the whole job to
fail. Each step is defined with fields including type, command, or shell. The type tells k8s
what image to use, the command is the command to be executed with language supported by that
image. If a shell script needs to be executed, use shell instead of command.

Also supported are env and volumes for defining the environment variables and volumes specific to this step.

generateName The prefix for all jobs created by Honeydipper, defaults to honeydipper-job-.

berglas_files Use Berglas to fetch secret files. A list of objects, each

has a file and a secret field. Optionally, you can specify the owner, mode and dir_mode for the file. This is
achieved by adding an initContainer to run the berglas access "$secret" > "$file" commands.

Berglas is a utility for handling secrets. See their github repo for details.

env A list of environment variables for all the steps.

volumes A list of volumes to be attached for all the steps. By default, there will be a EmptyDir volume
attached at /honeydipper. Each item should have a name and volume and optionally a subPath,
and they will be used for creating the volume definition and volume mount definition.

4.4. Workflows 105

https://github.com/GoogleCloudPlatform/berglas

Honeydipper Configurations, Release 1.0.0

workingDir The working directory in which the command or script to be exected. By default, /
honeydipper. Note that, the default workingDir defined in the image is not used here.

script_types A map of predefined script types. The type field in steps will be used to select the
image here. image field is required. command_entry is used for defining the entrypoint when
using command field in step, and command_prefix are a list or a string that inserted at the top of
container args. Correspondingly, the shell_entry and shell_prefix are used for defining
the entrypoint and argument prefix for running a shell script.

Also supported is an optional securtyContext field for defining the image security context.

resources Used for specifying how much of each resource a container needs. See k8s resource manage-
ment for containers for detail.

predefined_steps A map of predefined steps. Use the name of the predefined step in steps list to easily
define a step without specifying the fields. This makes it easier to repeat or share the steps that can
be used in multiple places. We can also override part of the predefined steps when defining the steps
with use and overriding fields.

predefined_env A map of predefined environment variables.

predefined_volumes A map of predefined volumes.

nodeSelector See k8s pod specification for detail

affinity See k8s pod specification for detail

tolerations See k8s pod specification for detail

timeout Used for setting the activeDeadlineSeconds for the k8s pod

cleanupAfter Used for setting the TTLSecondsAfterFinished for the k8s job, requires 1.13+ and
the alpha features to be enabled for the cluster. The feature is still in alpha as of k8s 1.18.

no_cleanup_k8s_job By default, the job will be deleted upon successful completion. Setting this context
variable to a truthy value will ensure that the successful job is kept in the cluster.

k8s_job_backoffLimit By default, the job will not retry if the pod fails (backoffLimit set to 0), you
can use this to override the setting for the job.

parallelism Parallel job execution by setting this to a non-negative integer. If left unset, it will default to
1.

fromCronJob Creating the job based on the definition of a cronjob, in the form of namespace/
cronjob. If the namespace is omitted, the current namespace where the job is being created
will be used for looking up the cronjob.

job_creator The value for the creator label, defaults to honeydipper. It is useful when you want
to target the jobs created through this workflow using kubectl commands with -l option.

on_job_start If specified, a workflow specified by on_job_start will be executed once the job is
created. This is useful for sending notifications with job name, links to the log etc.

Export Contexts

log The logs of the job organized in map by container and by pod

output The concatinated log outputs as a string

job_status A string indicating if the job is success or failure

See below for a simple example

106 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

workflows:
ci:
call_workflow: run_kubernetes
with:

system: myrepo.k8s_cluster
steps:
- git_clone # predefined step
- type: node
workingDir: /honeydipper/repo
shell: npm install && npm build && npm test

Another example with overrriden predefined step

workflows:
make_change:
call_workflow: run_kubernetes
with:

system: myrepo.k8s
steps:
- git_clone # predefined step
- type: bash
shell: sed 's/foo/bar/g' repo/package.json

- use: git_clone # use predefined step with overriding
name: git_commit
workingDir: /honeydipper/repo
shell: git commit -m 'change' -a && git push

An example with Berglas decryption for files. Pay attention to how the file ownership is mapped to the
runAsUser.

workflows:
make_change:
call_workflow: run_kubernetes
with:

system: myrepo.k8s
steps:
- use: git_clone
env:
- name: HOME
value: /honeydipper/myuser

workingDir: /honeydipper/myuser
securityContext:
runAsUser: 3001
runAsGroup: 3001
fsGroup: 3001

- type: node
workingDir: /honeydipper/myuser/repo
shell: npm ci

berglas_files:
- file: /honeydipper/myuser/.ssh/id_rsa
secret: sm://my-project/my-ssh-key
owner: "3001:3001"
mode: "600"
dir_mode: "600"

4.4. Workflows 107

Honeydipper Configurations, Release 1.0.0

4.4.14 send_heartbeat

sending heartbeat to alert system

Input Contexts

alert_system The alert system used for monitoring, by default opsgenie

heartbeat The name of the heartbeat

This workflow is just a wraper around the opsgenie.heartbeat function.

4.4.15 slack_users

This workflow wraps around the slack_bot.users function and make multiple calls to stitch pages together.

4.4.16 slashcommand

This workflow is used internally to respond to slashcommand webhook events. You don’t need to use this workflow
directly in most cases. Instead, customize the workflow using _slashcommands context.

Input Contexts

slashcommands A map of commands to their definitions. Each definition should have a brief usage,
workflow contexts, and allowed_channels fields. By default, two commands are already
defined, help, and reload. You can extend the list or override the commands by defining this
variable in _slashcommands context.

slash_notify A recipient list that will receive notifications and status of the commands executed through
slashcommand.

Export Contexts

command This variable will be passed the actual workflow invoked by the slashcommand. The command
is the first word after the prefix of the slashcommand. It is used for matching the definition in $ctx.
slashcommands.

parameters This variable will be passed the actual workflow invoked by the slashcommand. The param-
eters is a string that contains the rest of the content in the slashcommand after the first word.

You can try to convert the $ctx.parameters to the variables the workflow required by the workflow being invoked
through the _slashcommands context.

contexts:

_slashcommands:

######## definition of the commands ###########
slashcommand:

slashcommands:
greeting:
usage: just greet the requestor
workflow: greet

######## setting the context variable for the invoked workflow ###########
greet:

recipient: $ctx.user_name # exported by slashcommand event trigger
type: $ctx.parameters # passed from slashcommand workflow

108 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

4.4.17 slashcommand/announcement

This workflow sends an announcement message to the channels listed in slash_notify. Used internally.

4.4.18 slashcommand/execute

No description is available for this entry!

4.4.19 slashcommand/help

This workflow sends a list of supported commands to the requestor. Used internally.

4.4.20 slashcommand/prepare_notification_list

This workflow constructs the notification list using slash_notify. If the command is NOT issued from one of the
listed channels.

4.4.21 slashcommand/respond

This workflow sends a response message to the channels listed in slash_notify. Used internally.

4.4.22 slashcommand/status

This workflow sends a status message to the channels listed in slash_notify. Used internally.

4.4.23 snooze_alert

snooze an alert

Input Contexts

alert_system The alert system used for monitoring, by default opsgenie

alert_Id The Id of the alert, usually exported from the alert event

duration How long to snooze the alert for, using golang time format, by default 20m

This workflow is just a wraper around the opsgenie.snooze function. It also sends a notification through chat to
inform if the snoozing is success or not.

For example

rules:

- when:
source:

system: opsgenie
trigger: alert

do:
steps:

- call_workflow: snooze_alert
- call_workflow: do_something

4.4. Workflows 109

Honeydipper Configurations, Release 1.0.0

4.4.24 start_kube_job

This workflow creates a k8s job with given job spec. It is not recommended to use this workflow directly. Instead, use
run_kubernetes to leverage all the predefined context variables.

4.4.25 use_local_kubeconfig

This workflow is a helper to add a step into steps context variable to ensure the in-cluster kubeconfig is used.
Basically, it will delete the kubeconfig files if any presents. It is useful when switching from other clusters to local
cluster in the same k8s job.

workflows:
copy_deployment_to_local:
steps:

- call_workflow: use_google_credentials
- call_workflow: use_gcloud_kubeconfig

with:
cluster:

project: foo
cluster: bar
zone: us-central1-a

- export:
steps+:

- type: gcloud
shell: kubectl get -o yaml deployment {{ .ctx.deployment }} >

→˓kuberentes.yaml
- call_workflow: use_local_kubeconfig # switching back to local cluster
- call_workflow: run_kubernetes

with:
steps+:

- type: gcloud
shell: kubectl apply -f kubernetes.yaml

4.4.26 workflow_announcement

This workflow sends announcement messages to the slack channels. It can be used in the hooks to automatically
announce the start of the workflow executions.

workflows:
do_something:
with:

hooks:
on_first_action:
- workflow_announcement

steps:
- ...
- ...

4.4.27 workflow_status

This workflow sends workflow status messages to the slack channels. It can be used in the hooks to automatically
announce the exit status of the workflow executions.

110 Chapter 4. Essentials

Honeydipper Configurations, Release 1.0.0

workflows:
do_something:
with:

hooks:
on_exit:
- workflow_status

steps:
- ...
- ...

4.4. Workflows 111

Honeydipper Configurations, Release 1.0.0

112 Chapter 4. Essentials

CHAPTER 5

Gcloud

Contains drivers that interactive with gcloud assets

5.1 Installation

Include the following section in your init.yaml under repos section

- repo: https://github.com/honeydipper/honeydipper-config-essentials
branch: main
path: /gcloud

5.2 Drivers

This repo provides following drivers

5.2.1 gcloud-dataflow

This driver enables Honeydipper to run dataflow jobs

Action: createJob

creating a dataflow job using a template

Parameters

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

location The region where the dataflow job to be created

113

Honeydipper Configurations, Release 1.0.0

job The specification of the job see gcloud dataflow API reference CreateJobFromTemplateRequest for
detail

Returns

job The job object, see gcloud dataflow API reference Job for detail

See below for a simple example

workflows:
start_dataflow_job:
call_driver: gcloud-dataflow.createJob
with:
service_account: ...masked...
project: foo
location: us-west1
job:

gcsPath: ...
...

Action: updateJob

updating a job including draining or cancelling

Parameters

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

location The region where the dataflow job to be created

jobSpec The updated specification of the job see gcloud dataflow API reference Job for detail

jobID The ID of the dataflow job

Returns

job The job object, see gcloud dataflow API reference Job for detail

See below for a simple example of draining a job

workflows:
find_and_drain_dataflow_job:
with:

service_account: ...masked...
project: foo
location: us-west1

steps:
- call_driver: gcloud-dataflow.findJobByName

with:
name: bar

- call_driver: gcloud-dataflow.updateJob
with:
jobID: $data.job.Id
jobSpec:
currentState: JOB_STATE_DRAINING

- call_driver: gcloud-dataflow.waitForJob

(continues on next page)

114 Chapter 5. Gcloud

https://godoc.org/google.golang.org/api/dataflow/v1b3#CreateJobFromTemplateRequest
https://godoc.org/google.golang.org/api/dataflow/v1b3#Job
https://godoc.org/google.golang.org/api/dataflow/v1b3#Job
https://godoc.org/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

with:
jobID: $data.job.Id

Action: waitForJob

This action will block until the dataflow job is in a terminal state.

Parameters

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

location The region where the dataflow job to be created

jobID The ID of the dataflow job

interval The interval between polling calls go gcloud API, 15 seconds by default

timeout The total time to wait until the job is in terminal state, 1800 seconds by default

Returns

job The job object, see gcloud dataflow API reference Job for detail

See below for a simple example

workflows:
run_dataflow_job:
with:
service_account: ...masked...
project: foo
location: us-west1

steps:
- call_driver: gcloud-dataflow.createJob

with:
job:

gcsPath: ...
...

- call_driver: gcloud-dataflow.waitForJob
with:
interval: 60
timeout: 600
jobID: $data.job.Id

Action: findJobByName

This action will find an active job by its name

Parameters

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

location The region where the dataflow job to be created

name The name of the job to look for

5.2. Drivers 115

https://godoc.org/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

Returns

job A partial job object, see gcloud dataflow API reference Job for detail, only Id, Name and
CurrentState fields are populated

See below for a simple example

workflows:
find_and_wait_dataflow_job:
with:

service_account: ...masked...
project: foo
location: us-west1

steps:
- call_driver: gcloud-dataflow.findJobByName

with:
name: bar

- call_driver: gcloud-dataflow.waitForJob
with:
jobID: $data.job.Id

Action: waitForJob

This action will block until the dataflow job is in a terminal state.

Parameters

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

location The region where the dataflow job to be created

jobID The ID of the dataflow job

interval The interval between polling calls go gcloud API, 15 seconds by default

timeout The total time to wait until the job is in terminal state, 1800 seconds by default

Returns

job The job object, see gcloud dataflow API reference Job for detail

See below for a simple example

workflows:
wait_for_dataflow_job:
with:
service_account: ...masked...
project: foo
location: us-west1

steps:
- call_driver: gcloud-dataflow.createJob
with:
job:

gcsPath: ...
...

- call_driver: gcloud-dataflow.waitForJob
with:

(continues on next page)

116 Chapter 5. Gcloud

https://godoc.org/google.golang.org/api/dataflow/v1b3#Job
https://godoc.org/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

interval: 60
timeout: 600
jobID: $data.job.Id

Action: getJob

This action will get the current status of the dataflow job

Parameters

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

location The region where the dataflow job to be created

jobID The ID of the dataflow job

Returns

job The job object, see gcloud dataflow API reference Job for detail

See below for a simple example

workflows:
query_dataflow_job:
with:
service_account: ...masked...
project: foo
location: us-west1

steps:
- call_driver: gcloud-dataflow.createJob
with:
job:

gcsPath: ...
...

- call_driver: gcloud-dataflow.getJob
with:
jobID: $data.job.Id

5.2.2 gcloud-gke

This driver enables Honeydipper to interact with GKE clusters.

Honeydipper interact with k8s clusters through kubernetes driver. However, the kubernetes driver needs to
obtain kubeconfig information such as credentials, certs, API endpoints etc. This is achieved through making a RPC
call to k8s type drivers. This driver is one of the k8s type driver.

RPC: getKubeCfg

Fetch kubeconfig information using the vendor specific credentials

Parameters

service_account Service account key stored as bytes

5.2. Drivers 117

https://godoc.org/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

project The name of the project the cluster belongs to

location The location of the cluster

regional Boolean, true for regional cluster, otherwise zone’al cluster

cluster The name of the cluster

Returns

Host The endpoint API host

Token The access token used for k8s authentication

CACert The CA cert used for k8s authentication

See below for an example usage on invoking the RPC from k8s driver

func getGKEConfig(cfg map[string]interface{}) *rest.Config {
retbytes, err := driver.RPCCall("driver:gcloud-gke", "getKubeCfg", cfg)
if err != nil {
log.Panicf("[%s] failed call gcloud to get kubeconfig %+v", driver.Service, err)

}

ret := dipper.DeserializeContent(retbytes)

host, _ := dipper.GetMapDataStr(ret, "Host")
token, _ := dipper.GetMapDataStr(ret, "Token")
cacert, _ := dipper.GetMapDataStr(ret, "CACert")

cadata, _ := base64.StdEncoding.DecodeString(cacert)

k8cfg := &rest.Config{
Host: host,
BearerToken: token,

}
k8cfg.CAData = cadata

return k8cfg
}

To configure a kubernetes cluster in Honeydipper configuration yaml DipperCL

systems:
my-gke-cluster:
extends:
- kubernetes

data:
source: # all parameters to the RPC here

type: gcloud-gke
service_account: ...masked...
project: foo
location: us-central1-a
cluster: my-gke-cluster

Or, you can share some of the fields by abstracting

systems:
my-gke:

(continues on next page)

118 Chapter 5. Gcloud

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

data:
source:

type: gcloud-gke
service_account: ...masked...
project: foo

my-cluster:
extends:
- kubernetes
- my-gke

data:
source: # parameters to the RPC here

location: us-central1-a
cluster: my-gke-cluster

5.2.3 gcloud-kms

This driver enables Honeydipper to interact with gcloud KMS to descrypt configurations.

In order to be able to store sensitive configurations encrypted at rest, Honeydipper needs to be able to decrypt the
content. DipperCL uses e-yaml style notion to store the encrypted content, the type of the encryption and the
payload/parameter is enclosed by the square bracket []. For example.

mydata: ENC[gcloud-kms,...base64 encoded ciphertext...]

Configurations

keyname The key in KMS key ring used for decryption. e.g. projects/myproject/locations/
us-central1/keyRings/myring/cryptoKeys/mykey

RPC: decrypt

Decrypt the given payload

Parameters

* The whole payload is used as a byte array of ciphertext

Returns

* The whole payload is a byte array of plaintext

See below for an example usage on invoking the RPC from another driver

retbytes, err := driver.RPCCallRaw("driver:gcloud-kms", "decrypt", cipherbytes)

5.2.4 gcloud-pubsub

This driver enables Honeydipper to receive and consume gcloud pubsub events

Configurations

service_account The gcloud service account key (json) in bytes. This service account needs to have
proper permissions to subscribe to the topics.

For example

5.2. Drivers 119

Honeydipper Configurations, Release 1.0.0

drivers:
gcloud-pubsub:
service-account: ENC[gcloud-gke,...masked...]

Event: <default>

An pub/sub message is received

Returns

project The gcloud project to which the pub/sub topic belongs to

subscriptionName The name of the subscription

text The payload of the message, if not json

json The payload parsed into as a json object

See below for an example usage

rules:

- when:
driver: gcloud-pubsub
if_match:

project: foo
subscriptionName: mysub
json:
datakey: hello

do:
call_workflow: something

5.2.5 gcloud-secret

This driver enables Honeydipper to fetch items stored in Google Secret Manager.

With access to Google Secret Manager, Honeydipper doesn’t have to rely on cipher texts stored directly into the
configurations in the repo. Instead, it can query the Google Secret Manager, and get access to the secrets based on the
permissions granted to the identity it uses. DipperCL uses a keyword interpolation to detect the items that need to
be looked up using LOOKUP[<driver>,<key>]. See blow for example.

mydata: LOOKUP[gcloud-secret,projects/foo/secrets/bar/versions/latest]

As of now, the driver doesn’t take any configuration other than the generic api_timeout. It uses the default service
account as its identity.

RPC: lookup

Lookup a secret in Google Secret Manager

Parameters

* The whole payload is used as a byte array of string for the key

Returns

120 Chapter 5. Gcloud

Honeydipper Configurations, Release 1.0.0

* The whole payload is a byte array of plaintext

See below for an example usage on invoking the RPC from another driver

retbytes, err := driver.RPCCallRaw("driver:gcloud-secret", "lookup", []byte("projects/
→˓foo/secrets/bar/versions/latest"))

5.2.6 gcloud-spanner

This driver enables Honeydipper to perform administrative tasks on spanner databases

You can create systems to ease the use of this driver.

for example

systems:
my_spanner_db:
data:
serivce_account: ENC[...]
project: foo
instance: dbinstance
db: bar

functions:
start_backup:
driver: gcloud-spanner
rawAction: backup
parameters:
service_account: $sysData.service_account
project: $sysData.foo
instance: $sysData.dbinstance
db: $sysData.db
expires: $?ctx.expires

export_on_success:
backupOpID: $data.backupOpID

wait_for_backup:
driver: gcloud-spanner
rawAction: waitForBackup
parameters:
backupOpID: $ctx.backupOpID

export_on_success:
backup: $data.backup

Now we can just easily call the system function like below

workflows:
create_spanner_backup:
steps:

- call_function: my_spanner_db.start_backup
- call_function: my_spanner_db.wait_for_backup

Action: backup

creating a native backup of the specified database

Parameters

5.2. Drivers 121

Honeydipper Configurations, Release 1.0.0

service_account A gcloud service account key (json) stored as byte array

project The name of the project where the dataflow job to be created

instance The spanner instance of the database

db The name of the database

expires Optional, defaults to 180 days, the duration after which the backup will expire and be removed.
It should be in the format supported by time.ParseDuration. See the document for detail.

Returns

backupOpID A Honeydipper generated identifier for the backup operation used for getting the operation
status

See below for a simple example

workflows:
start_spanner_native_backup:
call_driver: gcloud-spanner.backup
with:
service_account: ...masked...
project: foo
instance: dbinstance
db: bar
expires: 2160h
24h * 90 = 2160h

export_on_success:
backupOpID: $data.backupOpID

Action: waitForBackup

wait for backup and return the backup status

Parameters

backupOpID The Honeydipper generated identifier by backup function call

Returns

backup The backup object returned by API. See databasepb.Backup for detail

See below for a simple example

workflows:
wait_spanner_native_backup:
call_driver: gcloud-spanner.waitForbackup
with:
backupOpID: $ctx.backupOpID

5.3 Systems

5.3.1 dataflow

This system provides a few functions to interact with Google dataflow jobs.

122 Chapter 5. Gcloud

https://godoc.org/time#ParseDuration
https://godoc.org/google.golang.org/genproto/googleapis/spanner/admin/database/v1#Backup

Honeydipper Configurations, Release 1.0.0

Configurations

service_accounts.dataflow The service account json key used to access the dataflow API, optional

locations.dataflow The default location to be used for new dataflow jobs, if missing will use .
sysData.locations.default. And, can be overriden using .ctx.location

subnetworks.dataflow The default subnetwork to be used for new dataflow jobs, if missing will use
.sysData.subnetworks.default. And, can be overriden using .ctx.subnetwork

project default project used to access the dataflow API if .ctx.project is not provided, optional

The system can share data with a common configuration Google Cloud system that contains the configuration.

For example

systems:
dataflow:
extends:

- gcloud-config
gcloud-config:
project: my-gcp-project
locations:
default: us-central1

subnetworks:
default: default

service_accounts:
dataflow: ENC[gcloud-kms,xxxxxxx]

Function: createJob

Creates a dataflow job using a template.

Input Contexts

project Optional, in which project the job is created, defaults to the project defined with the system

location Optional, the location for the job, defaults to the system configuration

subnetwork Optional, the subnetwork for the job, defaults to the system configuration

job Required, the data structure describe the CreateJobFromTemplateRequest, see the API doc-
ument for details.

Export Contexts

job The job object, details here

For example

call_function: dataflow.createJob
with:
job:
gcsPath: gs://dataflow-templates/Cloud_Spanner_to_GCS_Avro
jobName: export-a-spanner-DB-to-gcs
parameters:

instanceId: my-spanner-instance
databaseId: my-spanner-db
outputDir: gs://my_spanner_export_bucket

5.3. Systems 123

https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#CreateJobFromTemplateRequest
https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#CreateJobFromTemplateRequest
https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

Function: findJob

Find an active job with the given name pattern

Input Contexts

project Optional, in which project the job is created, defaults to the project defined with the system

location Optional, the location for the job, defaults to the system configuration

jobNamePattern Required, a regex pattern used for match the job name

Export Contexts

job The first active matching job object, details here

For example

steps:
- call_function: dataflow.findJob
with:

jobNamePattern: ^export-a-spanner-DB-to-gcs$
- call_function: dataflow.getStatus

Function: getStatus

Wait for the dataflow job to complete and return the status of the job.

Input Contexts

project Optional, in which project the job is created, defaults to the project defined with the system

location Optional, the location for the job, defaults to the system configuration

job Optional, the data structure describe the Job, see the API document for details, if not specified, will
use the dataflow job information from previous createJob call.

timeout Optional, if the job doesn’t complete within the timeout, report error, defaults to 1800 seconds

interval Optional, polling interval, defaults to 15 seconds

Export Contexts

job The job object, details here

For example

steps:
- call_function: dataflow.createJob
with:

job:
gcsPath: gs://dataflow-templates//Cloud_Spanner_to_GCS_Avro
jobName: export-a-spanner-DB-to-gcs
parameters:
instanceId: my-spanner-instance
databaseId: my-spanner-db
outputDir: gs://my_spanner_export_bucket

- call_function: dataflow.getStatus

124 Chapter 5. Gcloud

https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job
https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job
https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

Function: updateJob

Update a running dataflow job

Input Contexts

project Optional, in which project the job is created, defaults to the project defined with the system

location Optional, the location for the job, defaults to the system configuration

jobSpec Required, a job object with a id and the fields for updating.

For example

steps:
- call_function: dataflow.findJob
with:

jobNamePattern: ^export-a-spanner-DB-to-gcs$
- call_function: dataflow.updateJob
with:

jobSpec:
requestedState: JOB_STATE_DRAINING

- call_function: dataflow.getStatus

5.3.2 kubernetes

No description is available for this entry!

5.4 Workflows

5.4.1 cancelDataflowJob

Cancel an active dataflow job, and wait for the job to quit.

Input Contexts

system The dataflow system used for draining the job

job Required, a job object returned from previous findJob or getStatus functions, details here

cancelling_timeout Optional, time in seconds for waiting for the job to quit, default 1800

Export Contexts

job The updated job object, details here

reason If the job fails, the reason for the failure as reported by the API.

For example

rules:

- when:
source:

system: webhook
trigger: request

do:
steps:

(continues on next page)

5.4. Workflows 125

https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job
https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

- call_function: dataflow-sandbox.findJob
with:
jobNamePatttern: ^my-job-[0-9-]*$

- call_workflow: cancelDataflowJob
with:
system: dataflow-sandbox
job object is automatically exported from previous step

5.4.2 drainDataflowJob

Draining an active dataflow job, including finding the job with a regex name pattern, requesting draining and waiting
for the job to complete.

Input Contexts

system The dataflow system used for draining the job

jobNamePattern Required, a regex pattern used for match the job name

draining_timeout Optional, draining timeout in seconds, default 1800

no_cancelling Optional, unless specified, the job will be cancelled after draining timeout

cancelling_timeout Optional, time in seconds for waiting for the job to quit, default 1800

Export Contexts

job The job object, details here

reason If the job fails, the reason for the failure as reported by the API.

For example

rules:

- when:
source:

system: webhook
trigger: request

do:
call_workflow: drainDataflowJob
with:
system: dataflow-sandbox
jobNamePatttern: ^my-job-[0-9-]*$

5.4.3 use_gcloud_kubeconfig

This workflow will add a step into steps context variable so the following run_kubernetes workflow can use
kubectl with gcloud service account credential

Input Contexts

cluster A object with cluster field and optionally, project, zone, and region fields

The workflow will add a step to run gcloud container clusters get-credentials to populate the
kubeconfig file.

126 Chapter 5. Gcloud

https://pkg.go.dev/google.golang.org/api/dataflow/v1b3#Job

Honeydipper Configurations, Release 1.0.0

workflows:
run_gke_job:
steps:

- call_workflow: use_google_credentials
- call_workflow: use_gcloud_kubeconfig

with:
cluster:

cluster: my-cluster
- call_workflow: run_kubernetes

with:
steps+:

- type: gcloud
shell: kubectl get deployments

5.4.4 use_google_credentials

This workflow will add a step into steps context variable so the following run_kubernetes workflow can use
default google credentials, specify a credential through a k8s secret, or use berglas to fetch the credentials at run-
time(recommended).

Important: It is recommended to always use this with run_kubernetes workflow if gcloud steps are used

Input Contexts

google_credentials_secret The name of the k8s secret storing the service account key

google_credentials_berglas_secret The name of the secret to be fetched using berglas, if no secrets is
specified, use default service account

For example

workflows:
run_gke_job:
steps:

- call_workflow: use_google_credentials
with:
google_credentials_secret: my_k8s_secret

- call_workflow: run_kubernetes
with:
notice we use append modifier here ("+") so
steps pre-configured through :code:`use_google_credentials`
wont be overwritten.
steps+:

- type: gcloud
shell: gcloud compute disks list

An example with berglas secret

workflows:
run_my_job:
with:

google_credentials_berglas_secret: sm://my-gcp-project/my-service-account-secret

(continues on next page)

5.4. Workflows 127

https://github.com/GoogleCloudPlatform/berglas

Honeydipper Configurations, Release 1.0.0

(continued from previous page)

steps:
- call_workflow: use_google_credentials
- call_workflow: run_kubernetes

with:
steps+:

- type: gcloud
shell: gcloud compute disks list

- call_workflow: use_google_credentials
- call_workflow: run_kubernetes

with:
steps+:

- type: gcloud
shell: gsutil ls gs://mybucket

128 Chapter 5. Gcloud

CHAPTER 6

Datadog

This repo offers a way to emit Honeydipper internal metrics to datadog

6.1 Installation

Include the following section in your init.yaml under repos section

- repo: https://github.com/honeydipper/honeydipper-config-essentials
branch: main
path: /datadog

6.2 Drivers

This repo provides following drivers

6.2.1 datadog-emitter

This driver enables Honeydipper to emit internal metrics to datadog so we can monitor how Honeydipper is perform-
ing.

Configurations

statsdHost The host or IP of the datadog agent to which the metrics are sent to, cannot be combined with
useHostPort

useHostPort boolean, if true, send the metrics to the IP specified through the environment variable
DOGSTATSD_HOST_IP, which usually is set to k8s node IP using fieldRef.

statsdPort string, the port number on the datadog agent host to which the metrics are sent to

For example

129

Honeydipper Configurations, Release 1.0.0

drivers:
datadog-emitter:
useHostPort: true
statsdPort: "8125"

RPC: counter_increment

Increment a counter metric

Parameters

name The metric name

tags A list of strings to be attached as tags

For example, calling from a driver

driver.RPC.Caller.CallNoWait(driver.Out, "emitter", "counter_increment",
→˓map[string]interface{}{
"name": "myapp.metric.counter1",
"tags": []string{
"server1",
"team1",

},
})

RPC: gauge_set

Set a gauge value

Parameters

name The metric name

tags A list of strings to be attached as tags

value String, the value of the metric

For example, calling from a driver

driver.RPC.Caller.CallNoWait(driver.Out, "emitter", "gauge_set", map[string]interface
→˓{}{
"name": "myapp.metric.gauge1",
"tags": []string{
"server1",
"team1",

},
"value": "1000",

})

130 Chapter 6. Datadog

Honeydipper Configurations, Release 1.0.0

6.3 Systems

6.3.1 datadog

This system enables Honeydipper to integrate with datadog, so Honeydipper can emit metrics using workflows or
functions.

The system doesn’t take authentication configuration, but uses configuration from the datadog-emitter driver.
See the driver for details.

Configurations

heartbeat_metric Uses this metric to track all heartbeats with different tags.

Function: heartbeat

This function will send a heartbeat request to datadog.

Input Contexts

heartbeat The prefix of the heartbeat metric name used for tagging.

heartbeat_expires Tag the metric with expiring duration, used for creating monitors.

heartbeat_owner The owner of the heartbeat, used as the suffix of the metric name.

Function: increment

This function will increment a counter metric.

Input Contexts

metric The name of the metric.

tags Optional, a list of strings as tags for the metric.

Function: set

This function will set a gauge metric.

Input Contexts

metric The name of the metric.

tags Optional, a list of strings as tags for the metric.

value The value of the metric.

6.3. Systems 131

	Honeydipper
	Overview
	Design
	Vision
	Core Concepts
	Features

	More information
	TODO
	License
	Contributing

	Tutorials
	Installing Honeydipper
	Prerequisites
	Step 1: Prepare your bootstrap repo
	Step 2: Bootstrap your daemon
	Step 3: Hacking away

	Honeydipper Configuration Guide
	Topology and loading order
	Data Set
	Repos
	Drivers
	Systems
	Workflows
	Rules
	Config check
	References

	Workflow Composing Guide
	Composing Workflows
	Contextual Data
	Essential Workflows
	Running a Kubernetes Job
	Slash Commands

	Honeydipper Interpolation Guide
	Prefix interpolation
	Inline go template
	Workflow contextual data

	Driver Developer’s Guide
	Basics
	By Example
	Driver lifecycle and states
	Messages
	RPC
	Driver Options
	Collapsed Events
	Provide Commands
	Publishing and packaging

	DipperCL Document Automatic Generation
	Documenting a Driver
	Document a System
	Document a Workflow
	Formatting
	Building
	Publishing

	How-To
	Enable Encrypted Config in Honeydipper
	Loading the driver
	Config the driver
	How to encrypt your secret

	Logging Verbosity
	Reload on Github Push
	Github Integration in Honeydipper
	Config webhook in Github repo
	Configure a reloading rule
	Reduce the polling interval

	Setup a test/dev environment locally
	Using docker-compose
	Using local Go environment

	Essentials
	Installation
	Drivers
	api-broadcast
	auth-simple
	kubernetes
	redislock
	redispubsub
	redisqueue
	web
	webhook

	Systems
	circleci
	codeclimate
	github
	jira
	kubernetes
	opsgenie
	pagerduty
	slack
	slack_bot

	Workflows
	channel_translate
	circleci_pipeline
	cleanup_kube_job
	codeclimate/add_private_repo
	codeclimate/add_public_repo
	inject_misc_steps
	notify
	opsgenie_users
	opsgenie_whoisoncall
	pagerduty_whoisoncall
	reload
	resume_workflow
	run_kubernetes
	send_heartbeat
	slack_users
	slashcommand
	slashcommand/announcement
	slashcommand/execute
	slashcommand/help
	slashcommand/prepare_notification_list
	slashcommand/respond
	slashcommand/status
	snooze_alert
	start_kube_job
	use_local_kubeconfig
	workflow_announcement
	workflow_status

	Gcloud
	Installation
	Drivers
	gcloud-dataflow
	gcloud-gke
	gcloud-kms
	gcloud-pubsub
	gcloud-secret
	gcloud-spanner

	Systems
	dataflow
	kubernetes

	Workflows
	cancelDataflowJob
	drainDataflowJob
	use_gcloud_kubeconfig
	use_google_credentials

	Datadog
	Installation
	Drivers
	datadog-emitter

	Systems
	datadog

